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Abstract. The paper presents aspects concerning the tuning of two-degree-of-freedom 
(2-DOF) fuzzy controllers focused on 2-DOF PI-fuzzy controllers and 2-DOF PID-
fuzzy controllers. 2-DOF Mamdani and Takagi-Sugeno fuzzy control system structures 
are offered. The tuning is based on mapping the parameters of the linear PI and PID 
controllers to the parameters of the fuzzy controllers in terms of the modal equivalence 
principle. The linear controllers are tuned by Preitl’s and Precup’s Extended 
Symmetrical Optimum method. Some experimental results dealing with the speed 
control of a servo system are given. 
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1. INTRODUCTION 

The two-degree-of-freedom (2-DOF) controllers are advantageous in comparison with 
the 1-DOF ones because they ensure high control system (CS) performance concerning 
the set-point tracking and the regulation with respect to the disturbance inputs [1]–[4]. 
But, the main drawback of 2-DOF controllers is that the overshoot reduction is paid by a 
slower set-point response. 

The fuzzy logic is inserted in 2-DOF CS structures to improve the CS performance 
with respect to the modifications of set-point and load disturbance inputs and to ensure 
simultaneously small overshoot and settling time as well. Some approaches are proposed 
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for 2-DOF fuzzy control systems ensuring rather complicated tuning. A 2-DOF fuzzy 
controller composed of two fuzzy controllers to ensure is proposed and applied in [5] to 
the speed control of an induction motor drive. A fuzzy inference system is suggested in 
[6] to determine the value of the weight that multiplies the set-point for the proportional 
action in PID controllers. A 2-DOF controller consisting of a one-step-ahead fuzzy pre-
filter in the feed-forward loop and a PI-fuzzy controller in the feedback loop dedicated to 
the foot trajectory tracking control of a hydraulically actuated hexapod robot is discussed 
in [7]. The online tuning of a set-point regulator with a blending mechanism of a 2-DOF 
PI controller is conducted in [8] and applied to a laboratory heat transfer experimental 
setup. Self-tuning and model reference adaptive 2-DOF PID-fuzzy controllers are ana-
lyzed in [9] and [10], respectively. A 2-DOF control system structure consisting of a 
conventional foreword internal model controller and a feedback fuzzy controller is de-
signed in [11], and simulation results for an electro-hydraulic servo system are offered. A 
2-DOF Mamdani fuzzy controller for automotive semi-active suspension control with 
simulation results are outlined in [12]. Several structures of 2-DOF Takagi-Sugeno PI-
fuzzy controllers are given in [13] and [14]; use is made of the Extended Symmetrical 
Optimum (ESO) method proposed in [15] to tune and validate these controllers by real-
time experimental results for a class of servo systems. The computer aided-design of 2-
DOF fuzzy controllers developed by inserting fuzzy logic in 2-DOF linear CS structures 
tuned by algebraic methods is analyzed in [16] and [17]. 

This paper is based on the generic 2-DOF linear PI and Takagi-Sugeno PI-fuzzy con-
troller structures suggested in [14] and on our previous papers [13], [16] and [17] that 
fuzzify several components of 2-DOF linear controllers. The new contributions of this 
paper are: 

1. 2-DOF Mamdani and Takagi-Sugeno PI-fuzzy controller and PID-fuzzy controller 
structures. 

2. A unified tuning approach of the 2-DOF fuzzy controllers in these structures which 
enables the implementation of low-cost 2-DOF fuzzy controllers. 

The paper is structured as follows. The 2-DOF fuzzy controller structures and their 
tuning approach are presented in the next section. A case study on the tuning of the 2-DOF 
PI-fuzzy controllers and the 2-DOF PID-fuzzy controllers for two classes of servo 
systems is treated in Section III. Experimental results on a laboratory servo system are 
given. The conclusions are discussed in Section IV. 

2. STRUCTURES AND TUNING OF 2-DOF FUZZY CONTROLLERS 

The 2-DOF linear CS structures are presented in Fig. 1 which points out several 2-
DOF PID controller structures [2] or 2-DOF PI controller structures [14], where: r – the 
set-point, y – the controlled output, e = r  y or e = r1  y – the control error, u – the con-
trol signal, r1 – the filtered set-point, P(s) – the transfer function of the process which is 
linear in Fig. 1 and nonlinear in the 2-DOF fuzzy CS structures, and d1, d2 and d3 – the 
three types of load disturbance input scenarios. 
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Fig. 1. Structures of the 2-DOF control systems 

The 2-DOF CS structures presented in Fig. 1 are referred to as the set-point filter struc-
ture (Fig. 1 a), the feedforward structure (Fig. 1 b) and the feedback structure (Fig. 1 c). 
Other 2-DOF CS structures can be defined as well but the aim of this paper is to ensure 
the unified presentation of 2-DOF PI-fuzzy controllers and 2-DOF PID-fuzzy controllers. 

The transfer function of the PI or PID controller C(s) defined in Fig. 1 a and Fig. 1 b is 
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where kc is the controller gain, Ti is the integral time constant, Td is the derivative time con-
stant, D(s) is the approximate derivative term, and N  1, with typical values 8 ≤ N ≤ 20. 
The interacting forms of the transfer functions in (1) highlight other versions of tuning pa-
rameters like kc – the controller gain and Tc, '

cT  – the controller time constants. 

Accepting the condition 

 2( / ) 4 0i d i dT T N TT    (2) 
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the relations between the (strictly positive) tuning parameters of the non-interacting and 
interacting controller forms in (1) are 

 '
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The transfer function of the set-point filter in Fig. 1 a is 

 )1/()1()( sTsTsF cF   (4) 

where the parameter (time constant) TF fulfils the condition 

 0FT , (5) 

in order to avoid the non-minimum phase character of the CS. 
The three 2-DOF CS structures presented in Fig. 1 are equivalent because they have 

the same controller transfer functions, Gu,y(s) with the input u and the output y, and Gu,r(s) 
with the input u  and the output r 
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where the computation was done for the set-point filter structure (Fig. 1a). 
The different expressions of the transfer functions defined in (6) and (7) highlight the 

idea of 2-DOF controllers. 
The other two blocks in Fig. 1 b and Fig. 1 c are characterized by the following trans-

fer functions that ensure the transfer functions in (6) and (7): 
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The 2-DOF PI-fuzzy controllers and the 2-DOF PID-fuzzy controllers are developed 
to improve the CS performance. The development starts with the definition of the generic 
PI block with the transfer function 

 0 ,/) 1()(  ssksG c
 (10) 

The block with the generic transfer function defined in (10) is used next in particular 
forms to express the components with dynamics in Fig. 1 which are fuzzified. With this 
regard the block C(s) is fuzzified in the set-point filter structure (Fig. 1 a) and in the feed-
forward structure (Fig. 1 b), and the transfer function C(s) is expressed as 
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The block C(s) is fuzzified in the feedback structure (Fig. 1 c), and the transfer func-
tion C(s) is expressed as 
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The fuzzification of the generic PI block with the transfer function G(s) leads to the 
fuzzy block FB-τ. It is accepted that the continuous-time linear block with the transfer 
function G(s) has the input e (the control error) and the output u (the control signal). The 
structure of the block FB-τ is presented in Fig. 2, where FB is the Mamdani fuzzy block 
or the Takagi-Sugeno fuzzy block without dynamics, e(k) = e(k)  e(k  1) is the incre-
ment of control error, u(k) = u(k)  u(k  1) is the increment of control signal, and k is 
the index of the current sampling interval because the block FB-τ is implemented as a 
digital controller. 

 

Fig. 2. Structure of the block FB-τ 

The fuzzification in the block FC is based on the input membership functions illus-
trated in Fig. 3 which is applied for both the Mamdani fuzzy block and the Takagi-Sugeno 
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fuzzy block, but the output membership functions are defined only for the Mamdani fuzzy 
block. The eventually nonlinear scaling factors of the input and output variables of the 
block FC are inserted in the controlled process. 

Only three input membership functions are defined initially to have in mind the low-
cost implementation of the 2-DOF fuzzy controllers. More membership functions can be 
defined for nonlinear processes and high performance specifications. 

 

Fig. 3. Membership functions of the block FB-τ. 

Fig. 3 points out the tuning parameters of the block FB-τ: Be, Be and Bu for the 
Mamdani fuzzy block FB-τ, and Be and Be for the Takagi-Sugeno fuzzy block FB-τ. 
The sampling period Ts is next set according to the requirements of quasi-continuous 
digital control and Tustin’s method is applied to discretize the continuous-time linear 
generic PI block with the transfer function G(s). This results in the following recurrent 
equation of the incremental digital generic PI block and its parameters: 
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The complete rule base of the Mamdani fuzzy block FB-τ is 
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Mamdani’s MAX-MIN composition is used in the inference engine of the Mamdani 
fuzzy block FB-τ, and the center of gravity method is used in the defuzzification. 

The complete rule base of the Takagi-Sugeno fuzzy block FB-τ is 
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The rule base presented in (15) highlights by the additional upper indices in the rule 
consequents that the Takagi-Sugeno fuzzy block FB-τ can be obtained from the separate 
tuning of nine linear blocks FB-τ. Therefore the Takagi-Sugeno fuzzy block FB-τ exhibits 
like a bumpless interpolator of nine separately tuned linear PI blocks defined in accor-
dance with (10). 

The SUM and PROD operators are used in the inference engine of the Takagi-Sugeno 
fuzzy block FB-τ, and the weighted average method is used in the defuzzification. 

The modal equivalence principle [18] is applied to guarantee the quasi-PI behavior of 
the Mamdani fuzzy block FB-τ and of the Takagi-Sugeno fuzzy block FB-τ. This results 
in the useful tuning conditions 

 
ee BB   , 

ePu BKB     (16) 

where both tuning conditions are applied in the tuning of the Mamdani fuzzy block FB-τ, 
and the first one is applied in the tuning of the Takagi-Sugeno fuzzy block FB-τ. 

The following new 2-DOF fuzzy controller structures are defined on the basis of the 
Mamdani and Takagi-Sugeno fuzzy blocks FB-τ: 
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1. The set-point filter 2-DOF PI-fuzzy controller (Fig. 4). 
2. The set-point filter 2-DOF PID-fuzzy controllers (Fig. 5). 
3. The feedforward 2-DOF PI-fuzzy controller (Fig. 6). 
4. The feedforward 2-DOF PI-fuzzy controllers (Fig. 7). 
5. The feedback 2-DOF PI-fuzzy controller (Fig. 8). 
6. The feedforward 2-DOF PI-fuzzy controllers (Fig. 9) 

 

Fig. 4. Structure of the set-point filter 2-DOF PI-fuzzy controller 

 

Fig. 5. Structures of the set-point filter 2-DOF PID-fuzzy controllers 

 

Fig. 6. Structure of the feedforward 2-DOF PI-fuzzy controller 
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Fig. 7. Structures of the feedforward 2-DOF PID-fuzzy controllers 

 

Fig. 8. Structure of the feedback 2-DOF PI-fuzzy controller 

The linear blocks in Fig. 4 … Fig. 9 are presented in their continuous-time forms for 
the sake of simplifying the presentation. This hybrid treatment can lead to complicated 
problems in the systematic analysis of the fuzzy CS structures. However the discrete-time 
forms of the linear blocks in the 2-DOF controller structures are implemented actually. 

 

Fig. 9. Structures of the feedback 2-DOF PID-fuzzy controllers 
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The unified tuning approach for the 2-DOF PI-fuzzy controllers and the 2-DOF PID-
fuzzy controllers consists of the following steps 1 to 4. 

Step 1. Apply a linear design and tuning method to tune the parameters of the 2-DOF 
linear PI and PID controllers with the transfer functions defined in (1) … (9). 

Step 2. Set the sampling period according to the requirements of quasi-continuous 
digital control, take into account the zero-order hold and discretize the continuous-time 
linear controllers. 

Step 3. Set the parameter Be and apply the tuning conditions (16). 
The setting of the parameter Be is important. The experience of the CS designer can be 

taken into consideration but the stability analysis can be performed, too. Several stability 
analysis approaches can be applied in this context [19]–[23]. 

3. CASE STUDY AND EXPERIMENTAL RESULTS 

The controlled processes considered in the case study to validate a part of the struc-
tures of 2-DOF PI-fuzzy controllers and 2-DOF PID-fuzzy controllers is characterized by 
the two transfer functions 

 )]1(/[)( sTsksP ΣP  , (17) 

 )]1)(1(/[)( 1 sTsTsksP ΣP  , (18) 

where kP is the controlled plant gain, T is the small time constant or the sum of parasitic 
time constants, and T1 is the large time constant. Such processes are used as controlled 
plants in control systems themselves or in local control systems in a wide area of appli-
cations [24]–[41]. The transfer functions presented in (17) and (18) correspond to the 
simplified linearized models of these processes. 

As shown in [1], for the given controlled processes the PI controllers for the process 
with the transfer function defined in (17) and the PID controllers for the process with the 
transfer function defined in (18) can ensure acceptable control system performance indi-
ces (overshoot, settling time, rise time). These PI and PID controllers can be tuned by the 
ESO method [15] to improve the control system performance indices and to guarantee a 
good trade-off to the desired or imposed control performance indices by a single design 
parameter referred to as . The PI and PID tuning conditions are expressed as follows for 
the 2-DOF CS structure presented in Fig. 1 a and for the transfer functions of the con-
troller defined in (1): 

 1
'2  , ),/(1 TTTTkTk cΣcPΣc   (19) 

and the control system performance indices can be improved further by introducing the 
reference filter with the transfer function 

 )1/(1)( sTsF Σ  (20) 

The ESO method is applied in step 1 of the tuning approach for the 2-DOF PI-fuzzy 
controllers and the 2-DOF PID-fuzzy controllers presented in Section II. 
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Useful diagrams concerning the choice of the design parameter  and the tuning rela-
tions of a second order set-point filter as well are given in [15]. 

Two laboratory setups based on electrical drives (Fig. 10 and Fig. 11) implemented in 
the Intelligent Control Systems Laboratory with the “Politehnica” University of Timi-
soara, Romania, are considered to validate a part of the 2-DOF fuzzy CS structures sug-
gested here. 

 

Fig. 10. AMIRA DR 300 laboratory setup 

 

Fig. 11. INTECO modular servo laboratory setup 

The parameters of the controlled process used in the speed control of the laboratory 
setup presented in Fig. 10 are 
 s 035.0  ,4900  ΣP Tk  (21) 

The parameters of the controlled process used in the (angular) position control of the 
laboratory setup presented in Fig. 11 are 

 s 92.0  ,88.139  ΣP Tk  (22) 
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The tuning steps presented in the previous section were applied and the main parameters 
involved in the tuning of the 2-DOF PI-fuzzy controllers are pointed out as follows. 

A Takagi-Sugeno set-point filter 2-DOF PI-fuzzy controller is tuned for the process 
described in Fig. 10 and (21). Two separate linear PI controllers are first designed. They 
have the values of the design parameters 

 169865421   (23) 

for the rules 1, 2, 4, 5, 6, 8 and 9, and 

 473   (24) 

for the rules 3 and 7. Therefore the parameters of the continuous-time linear PI controllers 
are 

 0015.09865421  CCCCCCC kkkkkkk  (25) 

 s 56.09865421  iiiiiii TTTTTTT  (26) 

 0029.073  CC kk  (27) 

 s 14.073  ii TT  (28) 

Accepting the sampling period Ts = 0.005s the parameters of the digital PI controllers 
are 

 1 2 4 5 6 8 9 0.0014,P P P P P P PK K K K K K K        (29) 

 1 2 4 5 6 8 9 1.8571               (30) 

 3 7 0.0024P PK K   (31) 

 3 7 8.6667     (32) 

The parameters of the block FB-Tc are 

 75eB , 57.869eB  (33) 

The fuzzy CS with this 2-DOF Takagi-Sugeno PI-fuzzy controller was tested by real-
time experiments and compared with the linear CS with the PI controllers designed for 
 = 6. The speed responses exhibited by the designed linear and by the fuzzy CSs are 
presented in Fig. 12 and Fig. 13, respectively. These results correspond to the rectangular 
modification of the set-point r and to the rectangular modification of the d3 type load 
disturbance input. 

The experimental results prove that the 2-DOF CS with the fuzzy controller outper-
forms the 2-DOF CS with the linear controller. An analysis concerning the comparison of 
the experimental results from the point of view of smallest settling time and overshoot is 
offered in [14]. 
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Another Takagi-Sugeno set-point filter 2-DOF PI-fuzzy controller is tuned for the 
process described in Fig. 11 and (22). Two separate linear PI controllers are first designed 
for this fuzzy controller, too. They have the values of the design parameters 

 24.79865421   (34) 

for the rules 1, 2, 4, 5, 6, 8 and 9, and 

 8.473   (35) 

for the rules 3 and 7. Therefore the parameters of the continuous-time linear PI controllers 
are 

 0029.09865421  CCCCCCC kkkkkkk  (36) 

 s 6636.69865421  iiiiiii TTTTTTT  (37) 

 0035.073  CC kk  (38) 

 s 4197.473  ii TT  (39) 

The sampling period Ts = 0.005s is accepted for this fuzzy controller. The parameters 
of the block FB-Tc are 

 3012.0eB , 9897.29eB  (40) 

The fuzzy CS with this 2-DOF Takagi-Sugeno PI-fuzzy controller was tested by real-
time experiments and compared with the linear CS with the PI controllers designed for 
 = 6. The speed responses exhibited by the designed linear and by the fuzzy CSs are 
presented in Fig. 14 and Fig. 15, respectively. These results correspond to the step modi-
fication of the set-point r followed by the step modification of the disturbance input ap-
plied after 25 s. The experimental results prove that the 2-DOF CS with the fuzzy con-
troller outperforms the 2-DOF CS with the linear controller. 

4. CONCLUSIONS 

Unified structures of Mamdani and Takagi-Sugeno 2-DOF PI-fuzzy controllers and 2-
DOF PID-fuzzy controllers are proposed in this paper. They use the original definition 
and tuning of Mamdani and Takagi-Sugeno fuzzy blocks FB-τ which is inserted in the 
unified tuning approach. 

The performance of the 2-DOF fuzzy CSs with such blocks FB-τ can be further im-
proved. The consequents in the rules 3 and 7 can be modified in this context. Other 
membership functions can cope with additional nonlinearities of the controlled process. 
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Fig. 12. Speed response of linear CS with 2-DOF PI controller without load (a) 
for r = 300 rpm and 5 s period of 10 % d3 rated load (b) 
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Fig. 13. Speed response of fuzzy CS with 2-DOF PI-fuzzy controller without load (a) 
for r = 300 rpm and 5 s period of 10 % d3 rated load (b) 
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Fig. 14. Position response of linear CS with 2-DOF PI controller 

 

Fig. 15. Position response of fuzzy CS with 2-DOF PI-fuzzy controller 

The suggested structures are transparent and relatively simple. Their limitation con-
cerns the necessity of systematic analyses including the stability, parametric sensitivity 
and robustness which represent the directions of future research. 
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ASPEKTI PODEŠAVANJA 2-DOF FAZI KONTROLERA 

Stefan Preitl, Radu-Emil Precup, Zsuzsa Preitl 

Ovaj rad predstavlja aspekte podešavanja fazi kontrolera sa dva stepena slobode (2-DOF) sa 
težištem na 2-DOF PI-fazi kontrolerima i 2-DOF PID-fazi kontrolerima. Ponuđene su strukture sa 
dva stepena slobode Mamdani i Takagi-Sugeno fazi upravljačkih sistema. Podešavanje je 
zasnovano na mapiranju parametara linearnih PI i PID kontrolera sa parametrima fazi kontrolera 
u pogledu principa jednakosti. Linearni kontroleri su podešeni proširenim metodom simetričnog 
optimuma Preitl-a i Precup-a. Dati su neki eksperimentalni rezultati u vezi sa kontrolom brzine 
servo sistema.  

Ključne reči: 2-DOF PI-fazi kontroleri, 2-DOF PID-fazi kontroleri, PI kontroleri, PID kontroleri 

 


