
FACTA UNIVERSITATIS
Series: Automatic Control and Robotics Vol. 8, No 1, 2009, pp. 45 - 65

DESIGN FOR TESTABILITY OF REAL-TIME SYSTEMS FOR
INDUSTRIAL PROCESS CONTROL

UDC 621.11 681.5

Milun Jevtić, Milunka Damnjanović

Department of Electronics, University of Niš, Faculty of Electronic Engineering,
Aleksandra Medvedeva 14, 18000 Niš, Serbia

E-mail: (milun.jevtic; milunka.damnjanovic)@elfak.ni.ac.rs

Abstract. Real-time-systems testing for the reliable functioning and protection of the
system environment from damages is considered in this paper. A systematic procedure
for real-time systems design with emphasis to system testability implementation is
considered. The approach to design for testability (DFT) of hard real-time systems by
monitoring is described. Different applied techniques for on-line testing on circuit-,
system- and application-level are discussed. The modifications of some techniques
made in order to accomplish the effective trade-off between space/time overhead and
the cost of dependable real-time-system, are considered too. This paper also describes
a realization run-time monitoring of real-time systems that can be used to verify
formally some properties in design time, and to enable run-time checks. The goal of
real time monitoring is to keep system performance within a range that does not
change the order and timing of events.

Key words: Design, Real-time systems, Testability, Run-time monitoring, Fault
tolerance, Time redundancy

1. INTRODUCTION

Increased emphasis on shortening the time to first customer delivery, improving qual-
ity, effectively managing design complexity, and reducing overall life cycle costs drives
designers to find more efficient ways to perform design verification and prototype test.
The traditional design methodology of digital circuits and systems assume the test proce-
dure and test sequence generation after the system or circuit logic design is completed.
However the complexity of recent circuits and systems caused the need for too long time
for test sequence generation or made it impossible. From another point of view, system
testability affects the cost of prototyping and production testing and is very closely related
to system reliability. During hardware-software integration, unanticipated iterations arise

 Received May 14, 2010

46 M. JEVTIĆ, M. DAMNJANOVIĆ

that can cause significant schedule delays. Detecting and isolating these events or prob-
lems can add weeks or months to tight schedules [1], [2]. To solve this problem, circuit
designers use design-for-testability (DFT) methodology [3], [4], [24]. A designer can di-
rectly affect a system's degree of testability and diagnosability by considering its test and
diagnosis requirements as design requirements, not as test requirements decoupled from
the design process.

To be successful, DFT must deal with test problems in all phases of the product's life
[5]. Designers and test engineers can introduce test requirements and strategies early in
the design cycle. They can also use the procedures that some methodology provides for
test strategy selection and DFT implementation at the chip, multichip module, board, and
system levels.

DFT strategy selection and implementation activities operate on successive refine-
ments of a design, starting at the system specification level and continuing to the hardware
and software physical-implementation level.

Testability is of special importance in RTS (Real-Time Systems) - systems whose
correctness depends not only on their logical and functional behaviour, but also on the
timing properties of this behaviour. They can be classified as hard RTS, in which the
consequences of missing a deadline may be catastrophic, and soft RTS, in which the con-
sequences are relatively milder.

Hard RTS testing include testing of functional behaviour and testing of timing prop-
erties. It is necessary to obtain it as on-line testing - system testing during its functioning
and without degradation of system properties.

The application of the Real-Time-Systems (RTS) to control and monitor the processes
like industrial, chemical or other processes dangerous for humanity and human environ-
ment and/or processes which can cause very expensive damages, states the additional
specific requirements to designers [6]. Namely, it is important not only to accomplish
properly monitor and control functioning with high reliability, but to predict the system
behaviour in case of fault and error occurrence. For that reason, during the designing of
these RTS, in addition to classical reliability consideration, the stabile provision of prop-
erly functioning hardware and system software resources (dependability) and the ability
of a system to continue to function, perhaps at reduced capacity, in the presence of faults
(responsiveness) must be considered.

One of the goals during real-time system designing process is to create a predictable
real-time system. So, RTS testing is very important for the properly functioning verifica-
tions for the fabricated circuit or system, and for that performances achieving as well [7],
[8]. The performance achieving states the necessity of testing (test procedure driving)
during the circuit or system functioning in real time. This is known as on-line testing, in
contrast to off-line testing when the circuit or system under test is not in working state but
in special test environment.

Most test techniques work effectively by reducing the complexity of the circuit to be
tested or by increasing controllability and observability.

To make the on-line testing possible, a circuit or system must have self-test possibility.
So, the Built In Self Test (BIST) [9] was implemented on both - circuit and system level.
RTS testing includes hardware, software and real time characteristics checking (real-time
characteristics satisfaction).

 Design for Testability of Real-Time Systems for Industrial Process Control 47

Based on on-line testing, it is easy to accomplish the system function properly after
some faults are detected in the system because permanent faults cause only a small frac-
tion of all detected errors, as compared with transient faults [10]. Transient faults are
induced mainly by outside disturbances such as power jitter, electromagnetic interference,
ionization due to cosmic rays, or alpha particles from packaging materials. Of course,
there is a class of intermittent faults - faults that occur from time to time, but in RTS they
are classified either as transient faults or as permanent faults (in case of multiple fault
occurrence in defined time-interval).

Here we identify critical design points and outline some practical solutions that refer
to efficient on-line detectors (detecting errors during system operation) and error-handling
procedures. The on-line testing techniques are to be considered as very important in
finding the trade-offs between real-time system characteristics degradation caused by test
accomplishing, and system cost. Some new modifications of the existing techniques for
these purposes are presented in this paper. Also, a systematic procedure for design of RTS
with emphasis to system testability realization is considered. An approach to DFT of hard
RTS by monitoring is described and some base functions for its implementation are
defined.

2. CONVENTIONAL STRATEGIES FOR TESTING REAL-TIME SYSTEMS

Before we start considering on-line testing techniques, let's consider base strategy of
testing RTS. [23]

There are at least three primary strategies for testing and evaluating control systems [8].
The sequential test environment shown in Figure 1. is the least complex. This strategy

uses stored scenario data to drive the system under test. Test results are stored and ana-
lyzed.

Scenario Test Analysis

Fig. 1. Sequential test environment (Real-time task)

In this case, the only process running in real time is the system under test. The stored
scenario data is generated off line before test execution. The stored scenario data can be
either recorded operational and environmental data, or it can be simulated data produced
by a scenario generation process.

This approach has some disadvantages:
• The success or failure of the test is unknown until the analyses are completed.

Analyses are completed some time after the test is completed. Depending on the
schedules at the test facility, it may be necessary to tear down the test setup and
subsequently rebuild it if more tests are required.

• The scenario data must be rebuilt if a test needs to be suspended before comple-
tion because problems are observed. Generating a scenario can be a lengthy

Generate and
store test-

scenario data

Playback test-
scenario data
and store test

 results

Analyze
stored test

results

48 M. JEVTIĆ, M. DAMNJANOVIĆ

process. If this is not done in real time, there could be significant down time while
a new test scenario is generated.

• Test scenarios cannot be changed dynamically. It is not possible to observe the
test in progress and ask "what if" questions.

Scenario Test Analysis

Fig. 2. Real-time scenario generation test environment
(Real-time tasks)

A more complicated simulation test environment involves conducting the control
system test in real time as the scenario data is generated. This simulation test environment
is called the real-time scenario generation test environment and is illustrated in Figure 2.
In such a simulation environment, the data analysis is done off line, but the scenario
generation and actual test are conduced in real time.

The real-time scenario generation and analysis test environment in Figure 3. is the
only simulation test environment where all three procedures (generate scenario data,
conduct test and analyze test data) are executed in real time.

Scenario Test Analysis

Fig. 3. Real-time scenario generation and analysis test
environment (Real-time tasks)

It is good to concentrate on the real-time scenario generation and analysis test envi-
ronment because this type of environment is useful in all phases of the life cycle.

For many large systems, all three testing environments are needed during the devel-
opment life cycle. As a rule, the test approach to be implemented should maximize the
amount of real-time testing.

The previous considerations are generally accepted when the systems with small
number of processors are of interest. When the systems with great number of processors
are the matter (like hyper-cub topologies), sequential testing consideration enters the
scope of probabilistic model for the errors and test results [11].

Generate
scenario data
in real time

Conduct test
and store

test results

Analyze
stored test

results

Generate
scenario data
in real time

Conduct test
and output
test results

Analyze
test results
in real time

 Design for Testability of Real-Time Systems for Industrial Process Control 49

3. RUNTIME MONITORING IN RTS

In software engineering, monitoring is the recording of specified event occurrences
during program execution in order to gain runtime information that can not be obtained
merely by studying the program text. The monitored information includes the runtime
behaviour of the monitored program and pertinent information from the operating sys-
tems. In past years, researchers have used monitoring methods to gather information
through different forms of instrumentation techniques for program testing and debugging,
dynamic task scheduling, performance analysis, and program optimization [12], [13],
[26].

The goal of real time monitoring is to keep system performance within a range that
does not change the order and timing of events. Monitoring system is itself a system with
real time constraints. Monitoring can be achieved at various levels. Low-level monitoring
fetches every signal transmitted on the buses. High-level monitoring detects only process-
level events. Instrumentation code is inserted manually or automatically as in breakpoint
techniques. For events recognition, instrumentation code is inserted at specified points
where it can generate the information pertaining to the events of interest. The monitored
events should be events that are indicative of system behaviour.

Monitoring can occur either synchronously with application execution or asynchronously
to the execution. Synchronous checking, or assertion checking, requires that the user add
assertions to the application code. Assertions are checks to determine if, for a particular
section of software, the relevant parts of the system state (for example variable values or I/O
signals) are within the bounds needed for that section to operate properly. Assertions are
placed directly in the application and can only be checked when encountered during execu-
tion. If more frequent checking is needed, asynchronous checking must be used. Asynchro-
nous checking is done in an external process that receives events from the application.

Here, real-time monitoring is considered as system testing and debugging tool [25].
Namely, if we add the checking capability to the functions for events monitoring, which is
not a great effort after HRTS integration and testing during the design process, it is easy
to accomplish the testing of the timing characteristics of the events during the system's
functioning [27],[30] .

There are three broad approaches to monitoring: hardware, software and hybrid ap-
proach.

3.1. Software Monitoring Approach

There are two software monitoring techniques.
1. One technique embeds the monitoring code inside the target program. This tech-

nique is not transparent.
2. The other technique embeds the monitoring code inside system kernels or treats the

monitoring code as a process separated from the target code's process. This method is
transparent but less flexible.

Software monitoring, which requires event detection and event data collection, can be
described in the following ways:

• The target program detects the events and collects the event data.
• The target program detects the events and the monitor collects the event data.
• The kernel detects the events and the monitor collects the event data.

50 M. JEVTIĆ, M. DAMNJANOVIĆ

All three implementations have their advantages and disadvantages [32]. Implement-
ing both event detection and event collection inside the target program is the easiest and
most straightforward way to monitor the system. Performing event detection and event
collection at the kernel level has two advantages over that at the program level: one is
transparency, and the other is the reduction of monitoring perturbation. Transparency is
easily achieved because users do not need to modify their target programs for event de-
tection and event collection. Perturbation is reduced because context switching between
the target program and the kernel is avoided. In contrast, the execution of event detection
at the program level requires system call. This results in extensive context switching be-
cause system calls are implemented with interrupts to the kernel. However, event though
the kernel level approach reduces the perturbation, the extra monitoring overhead im-
posed on the kernel still slows down the kernels and increases the target program's exe-
cution time.

3.2. Hardware Monitoring Approach

In general, monitoring hardware is used to monitor the runtime behaviour of either
hardware devices or software modules. The former is used in the performance measure-
ment of hardware devices, such as measuring cache accesses, cache misses, memory ac-
cess time, total CPU time, total execution time, I/O requests, I/O grants, and I/O busy
time. Monitoring software modules are used in debugging and in performance analysis of
such software characteristics as program bottlenecks, dead locks, and the degree of par-
allelism. It seems that these two uses of monitoring are quite different, but the results of
hardware performance measurement can also help in software performance analysis and
debugging. For example, bottlenecks may be seen to arise from frequent references to the
same memory location and deadlocks from messages locked within the communication
network, while the degree of parallelism may be determined by dividing the total CPU
time by the total execution time.

3.3. Hybrid Monitoring Approach

Hybrid monitoring consists of software instrumentation and hardware detection - that
is, a compromise between hardware and software monitoring. The target program being
monitored is first instrumented manually or automatically to generate events, then a
hardware monitor is used to detect the events and to collect the corresponding event data.
The hardware monitor can be designed as a permanent part of the target system during the
design phase, or it can be an individual device or coprocessor integrated into a target
system during the testing and debugging phase.

When the hardware monitor is implemented as a part of the target system, the steps for
monitoring are as follows:

1. The event class to be monitored is defined and the memory for each class is allo-
cated.

2. The instrumentation code is inserted into the target program.
3. The target program is compiled with the instrumentation code, and a monitoring

symbol table is constructed for the instrumentation code.
4. The object code of the instrumented target program is linked and loaded so that the

object code responsible for monitoring will flag the occurrence of an event, and write the

 Design for Testability of Real-Time Systems for Industrial Process Control 51

event, including the event class and its relevant information, into the preallocated memory
space reserved in step 1 for that event class.

5. A hardware monitoring device snoops and matches the bus signal to the address allo-
cated to the event class. An event is detected if the monitoring hardware device detects the
address bus signal matching one of the preallocated addresses of the event classes.

When the hardware monitoring is implemented as a coprocessor, the steps for moni-
toring are as follows:

1. The event class to be monitored is defined and the memory for each class is allocated.
2. The instrumentation code is inserted into the target program.
3. The target program is compiled with the instrumentation code, and a monitoring

symbol table is constructed for the instrumentation code.
4. The object code of the instrumented target program is linked and loaded so that the

object code responsible for monitoring is executed by a dedicated monitoring coprocessor.
5. The monitoring coprocessor executes special monitoring instructions such as write,

which quickly constructs and stores the event trace into a high-speed RAM inside the
coprocessor.

3.4. Monitoring Implementation Functions

Both, hardware and software realized monitoring functions for embedding in the ap-
plication code or in operating system kernel level are seen as a set of library procedures,
usually in C language.

The observable events in a HRTS are specified by annotating real time programs with
those events that are to be monitored at run-time. Examples of these events include start
or completion of a program segment, and assignment to a state variable. A system con-
straint can be viewed as an assertion on the relationship between the occurrences of these
observable events. The proposed approach distinguishes between a system constraint that
is embedded in a RT program and a constraint that is monitored asynchronously by a
separate task. Prototype implementation allows the specification and monitoring of both
types of system constraints. In particular, the implementation supports annotating C pro-
grams with events and specifying system constraints.

In order to monitor system functioning through time by using the observable points,
function events is needed. The initiation and completion of a sequence of program state-
ments can be denoted by inserting this function to the source code as a label.

...
Ei(em,tmin,tmax) ->
statement_S
Ek(ej,tmin,tmax) <-
...

Fig. 4 Code fragment with label events

The right pointing-arrow specifies the event ei which denotes the start of the statement
that follows (statement_S), and the left-pointing-arrow specifies the end of the previous
statement. If tmin = tmax = 0, the function only stores the time of event occurrence, e.g. ei
related to the last occurrence of event em. For the defined tmin , tmax ≠ 0, the function

52 M. JEVTIĆ, M. DAMNJANOVIĆ

provides checking whether or not the event, e.g. ei, occurred inside the specified time
interval, to initiate the adequate system functioning by the operational system.

This approach has two purposes: it separates the timing concerns from the functional
specification of the program and it allows the expression of deadline and delay properties.
It is assumed that (1) two occurrences of the same event can not happen simultaneously,
(2) event names are unique across the system of tasks, and (3) there exists a single
monotonically increasing clock, accessible to all tasks.

Our approach considers the use of monitoring information to aid in scheduling task in
real-time environment [29]. The monitored information is fed back to the operating sys-
tem for achieving an adaptive behaviour.

Particular types of the observable events are assignments of values to a variable re-
ferred to as watchable variable. If variable v is declare by

watchable_v v(vmin,vmax,Δv)

any assignment of the value to it is considered as event, and if vmin,vmax ≠0 and
Δv≠0 is defined, checking is done if the value is inside the defined interval, and if the
absolute change of the value related to the last previous value greater than Δv.

Event history is generated in the system by storing the times and/or values of watch-
able variables. For event history survey during the prototype behaviour testing and for
event reconstruction during the system functioning, two other functions (on the software
kernel level) are needed: @(e,i) and @val(v,i). @(e,i) is the occurrence
function which returns the time of ith occurrence of the event e (i can be negative for
event referring backward). @val(v,i) is the function which returns the value of
watchable variable v on ith event of its change.

3.5. RT Task Monitoring Scenarios

RT tasks can be divided into pre-emptive and non pre-emptive tasks. Concerning its
execution time, pre-emptive tasks, unlike the non pre-emptive, do not have strict limits.
Also, their possible failure in execution would not affect significantly the proper func-
tioning of RTS. Therefore, the scheduler can pause the execution of such tasks when re-
ceiving execution request from some higher priority RT task. After the execution of high
priority task scheduler continues the execution of previously paused task. On the other
hand, non pre-emptive tasks execution failure, or execution outside given time limits can
lead to whole RTS failure. Because of this, high priorities are assigned to these tasks, and
they can not be paused while running.

Non pre-emptive RT tasks: Possible course of non pre-emptive task (τi) execution is
shown on Figure 5.

Fig. 5. Monitoring scenario of non pre-emptive task execution

 Design for Testability of Real-Time Systems for Industrial Process Control 53

From the moment – event rk when the request for task τi execution occurred, allowed
delay to starting the task execution can be checked at first. This is important for the tasks that
do not initiate with some external interrupt event. These tasks are “set” in the queue for
execution by some internal event. In the case of exceeding the interval Bi, monitoring timer-
counter generates a hardware interrupt request, and error Error_B is detected. Another
monitored time interval is task execution time (CPU time). For task execution time which is
shorter than Ci (minimum required time for correct task execution), marker Error_C- is set.
In the case of exceeding the task execution time Ci + Δi (maximum time for correct task
execution) monitoring module generates interrupt request to detect error Error_C+.

Such monitor performs over each RT task. Upon detection of any of these errors, it is
the policy of the planner and available time what will be taken. Restarting the same task
or starting an alternative task (λi) execution which will overcome given situation can be
done. For each task, deadline Di for its execution should also be monitored. Special
counter-timer is the most suitable for this purpose. In the case of its exceeding, interrupt
request is generated and hardware-software security task (Tsi) is started. This security task
should recover RTS or place it in a safe condition.

Pre-emptive RT tasks: Monitoring of pre-emptive tasks τi (Figure 6) differs from the
previous monitoring scenario. While its execution is stopped because of a higher priority
task τj, its monitoring timer-counter should be stopped (during Cj).

Fig. 6. Monitoring scenario of pre-emptive task execution

3.6. Hybrid On-line Process Monitoring Module

Depending on the application and environment, timing constraints imposed on a RTS
vary widely. Here presented FPGA based monitoring module [33] would be applicable to
each RTS determined to meet strict timing constraints imposed by the real world proc-
esses. FPGAs are chosen because of their low cost and ability for reconfiguration.

Posing the demand that on-line monitoring do not require significant CPU time and
clumsy additional specialized hardware, this paper presents one way of FPGA imple-
mentation of hybrid on-line RTS monitoring. It is intended for RTS based on an industrial
PC and Linux operating system which is widely accepted and available open source
system in RTS.

The system is based on additional hardware module with 32 programmable timer-
counters and interrupt logic. Each monitored process has assigned its own timer-counter.
Timers-counters are used as devices for defining the moments of events’ time occurrence
as well as watchdog i.e. monitoring timers for checking the correct timing execution of
the processes. In addition, simple software primitives for on-line monitoring implemen-

54 M. JEVTIĆ, M. DAMNJANOVIĆ

tation are realized. They can be activated from the desired place in application program
code. For monitoring of the processes and tasks in RTS without modification of applica-
tion program code, simple modification of the operating system task scheduler and dis-
patcher is predicted. Modification ensures that scheduler or dispatcher, with every change
of process/task status, activates appropriate software primitive for controlling timer and
checking the time constraints.

For minimal intrusion and using of CPU time during monitoring, hardware module for
PCs PCI slot is realized as shown in Figure 7.

Fig. 7. PCI card with hybrid on-line monitoring module

From Figure 7 it can be seen that the interface from monitoring module to RTS con-
sists of the following signals: DataBus, Read, Write, INTR, INTA, sl and clr. DataBus
is a 16 bit bidirectional bus. It transmits the data from RTS to monitoring module and vice
versa. RTS activates Read (Write) signals every time it needs to read data from (write
data to) monitoring module. Monitoring module sets INTR (Interrupt request) signal
every time any of currently executing tasks do not execute properly or execute outside of
the required time interval. As a response, RTS reads the message from DataBus and sets
INTA (Interrupt Acknowledge) signal. The message contains information about the
interrupt nature and the ID of the task that caused interrupt. It is now scheduler policy to
determine the actions that will be taken. When receiving Interrupt Acknowledge,
monitoring module resets INTR signal and continues to monitor RTS.

Signal sl is 3 bit select used by RTS when selecting the register from which to read
data (or selecting the register to write data to). The use of this signal will be explained
later in more detail. Signal clr has a function of clear signal and it is used by RTS to reset
monitoring module.

 Design for Testability of Real-Time Systems for Industrial Process Control 55

Monitoring module is controlled by software primitives from RTS and has the fol-
lowing functions:

• Setting the working mode of the timers-counters,
• Setting the time constraints,
• Enabling the timers-counters,
• Disabling the timers-counters,
• Reading the timers-counters,
• Timers-counters interrupt processing and
• Comparison of the timers-counters state with time constraints.

During the system verification phase monitoring system provides information about
system timing characteristics and creates a log file. During the system operation it should
detect deviations from predicted timing behaviour. These deviations could be the possible
consequence of a failure in RTS. Thereby, monitoring system has two working modes.
First mode refers to the system analysis. It performs with the purpose to measure the
execution time of every RT task. The obtained information can be used for the future
control of the RTS. In the second mode monitoring module has the function of built-in
selftesting based on a watchdog function. It checks the upper and lower time limit at the
tasks and periodic and quasi-periodic events level. The activation of each task initiates the
procedure of starting its assigned timer-counter. Monitoring timer-counter sets to
previously defined maximum task execution time and starts its countdown. If the excess
of time interval occurs, monitoring module sets interrupt request. If the task is complete
before time excess, timer-counter stops its countdown with the end of task execution.
Monitoring module reads its state and checks whether the task is executed before the
minimum needed execution time. If the task is executed in regular time intervals RTS
continues to work. Otherwise, scheduler starts provided procedure for system recovery
from detected error. In this way, predicted behaviour of HRTS is ensured.

Implemented system monitors up to 32 processes i.e. RT tasks and events that execute
in parallel. The number of monitored processes is relatively small, but it should be said
that HRTS in industrial applications do not have a lot of processes. But since our moni-
toring module for 32 processes requires only 23% of FPGA ALTERA EP2C35F672C6N
resources, as will be seen later, the number of monitored processes can be easily ex-
panded up to 150.

4. SYSTEMATIC APPROACH TO RTS DFT

If hardware/software co-design is assumed as a method for microcomputer systems
design [5], [14], [28] the activities for testability achieving are as is shown in Fig. 8. As
can be seen, the testability design activities are distributed through all design phases.
During the system specification defining, the uniform testing requirements have to be
stated, taking into account the requirements for system testing during

• system design,
• system production,
• system functioning and
• system maintenance.

56 M. JEVTIĆ, M. DAMNJANOVIĆ

Fig. 8. Systematic Approach to Real-time System DFT

For efficient achieving of today's hard RTS testing requirements, it is necessary to use
BIST approach on all levels - application, system, subsystem, board, and chip level. So, if
principles of operation are considered, error detection mechanisms can be divided into
corresponding levels (application, system and circuit level) [34].

Various on-line error detectors can be incorporated in the computer system [15]. The
basic principle of these detectors is the use of redundancy in

• devices (hardware replication),
• information (redundant codes),
• software or
• execution time.
The functions from function-set for BIST implementation, defined on system level, are

further developing into more detailed functions for hardware and software testing. Always
looking for the tradeoffs between system redundancy and test efficiency, the BIST
functions are implemented as hardware, software, or (in most cases) hardware-software

Integration

Runtime test

Field test support

FUNCTIONAL DESIGN

DFT hardware select DFT software select

DFT hardware verify DFT software verify

ARCHITECTURE
DEFINITION

TEST REQUIREMENTS

Development test

Manufacturing test Field test

Runtime test

SYSTEM
SPECIFICATION

 DETAILED DESIGN

AND

REALISATION
 DFT/BIST software DFT/BIST hardware

 Design for Testability of Real-Time Systems for Industrial Process Control 57

combination. The third case is dominant because it introduces minimal hardware/software
redundancy for enabling testability with flexible test running. Even in BIST or scan
technique implementation in hardware module or chip testing, to accomplish on-line (run-
time) testing, what is needed is software control (start and break) for test running and, if
wanted, test results checking.

In safety-critical RTS, the software testing phase may cost from three to five times as
much as any other phase of the software life cycle. Usually, testing begins early in the
development process, as test planning and specification overlap, to certain degree, with
requirements specification.

Aspects of general testing strategies and techniques also apply to real-time software.
However, additional requirements and difficulties characterize an effective testing process
for a real-time software for several reasons:

• The software contains several modules and decision statements.
• Many modules use the same resources simultaneously.
• The same sequence of test cases may produce different outputs, depending on when

the test is performed.
• System errors may be time dependent, only arising when the system and controlled

environment are in a particular state that may be impossible to reproduce.
• Finally, reliability, schedule, and performance requirements are usually more critical

than those for non-real-time software.
The strategy followed for testing an RTS is systematic and includes individual func-

tion, module, and bottom-up integration, using black-box and white-box disciplines.

5. REDUNDANCY IN RTS

Besides the basic function of Control RTS, different features such as the following
might be required:

• high reliability (high probability of continuous proper function over a given, long
interval),

• high availability (relatively low percentage of repair times),
• minimum time to recover from a detected fault,
• extremely low failure rates for short time periods,
• extremely high probability of transition to a safe final state after occurrence of a

malfunction,
• easy and timely diagnosis of faults or defects (on-line diagnosis).
• safety and security (are the abilities to protect the system from inadvertent misuse or

from malicious attempts to destroy system functionality,
• high dependability (the stable provision of properly functioning hardware and

system software resources),
• responsiveness (the ability of a system to continue to function, perhaps at reduced

capacity, in the presence of faults, also without delaying critical process deadlines).

These performances achievement is closely connected to redundancy implementation.
Redundancy in space and time [31] as fundamental resources of the RTS (Figure 9.),

58 M. JEVTIĆ, M. DAMNJANOVIĆ

Otherwise, space-time trade-off considering has the cost-effective RTS as an aim, al-
though time often plays the most critical role.

Space Space

 Basic Redundant
 system system

 Time Time

Fig. 9. Basic and redundant RTS

A global review of different redundant systems is shown in Fig. 10. Some approaches
use great hardware (space) redundancy but need very low time redundancy to provide
reliable functioning through error detection (error-correcting codes, duplex system, triple-
modular redundancy, etc.). Others need great time redundancy (multiprocessor rollback
and recovery, N-version programming, etc.)

Space redundancy

 (%)

1000

 100

 10

 0.0001 0.01 1 100 (s)

 Time redundancy

Fig. 10. Space-time overhead for redundant approaches

Triple-modular
redundancy

N-version
programming

Duplex
systems Multiprocessor

rollback and recovery
Error-correcting

codes

Microdiagnostics

Roll forward

Retry Reboot Restart

Boundary Scan

BIST

 Design for Testability of Real-Time Systems for Industrial Process Control 59

Error correcting codes, depending on code distance, detect and correct any number of
bit errors.

Duplex system starts the error handling procedure in case of two different results oc-
currence.

If three identical components are used, i.e. in the case of triple modular redundancy,
the results are compared via majority voting circuits. If one of the results differs from the
other two, it is masked out.

N-version programming provides comparison of results obtained in N various versions
of the program.

In backward recovery, an attempt is made to restore the system to a safe previous
state.

For forward recovery, an attempt is made to correct the system state.
Boundary scan provides primary an easy testing on circuit and module (PCB) level in

off-line mode. However, the on-line testing of particular modules can be accomplished in
time intervals when they are not active. It needs small additional hardware and a diag-
nostic test-routine.

BIST, based on scan technique, is inadequate for on-line testing the modules that are
continuously functioning but can easily be used in system dependability providing by
minimal software expanding and insignificant processor-time consumption. On system
level, BIST can be implemented in concurrent or nonconcurrent form.

In control RTS, BIST as general approach realized by different (even ad-hoc) tech-
niques of self-testing is a very good solution.

6. ON-LINE ERROR DETECTORS – ERROR DETECTION MECHANISMS

Various on-line error detectors can be incorporated in a computer system. The basic
principle of these detectors is the use of redundancy in

• devices (hardware replication),
• information (redundant codes),
• software or
• execution time.
Taking into account principles of operation, we can divide error detection mechanisms

into three levels:
• circuit,
• system (functional), and
• application.

6.1. Circuit level

Circuit-level detection mechanisms are implemented using error detection codes, self-
checking circuits, and duplicated complementary circuits [16]-[19].

A circuit is self-checking for a set of faults F if for any fault in F there exists a valid
input code that detects this fault. Scan and BIST techniques implemented in VLSI circuits
support this detection mechanism [9], [20]. BIST technique implementation can result in

60 M. JEVTIĆ, M. DAMNJANOVIĆ

a significant space overhead, but it doesn't need slightly processor time for testing, except
for the starting and essential test output analyzing

Error detection code applied to any functional unit provides error detection and cor-
rection. In general, a code can correct up to r bit errors and detect up to e additional bit
errors if and only if

2r + e + 1 < Hd ,

where Hd is the Hamming distance of the code (minimum number of positions in which
any two code words differ). So, simple parity codes (Hd = 2) assure detection of any sin-
gle-bit errors and all multiple-bit errors with an odd number of bit position changes. But
some other codes can detect and correct a number of errors: Hamming codes, Cyclic Re-
dundant Codes (CRC), AN cod (special code for arithmetic units), etc. [21]

Circuit-level detectors are quite effective for some system blocks such as memories or
communication subsystems. For other blocks the cost/error coverage ratio may not be
satisfactory for many applications, and thus system-level detectors have recently received
much attention.

6.2. System-level

System-level detection mechanisms can be regarded as "guardians" around the system
operation that check out invalid activities or information at a higher level than the previ-
ous ones. They verify system operations by functional assertions on program control flow,
memory accesses, and so on. Thus, these detectors verify the correctness of the system
operation by checking its various general properties. The most effective system detectors
use hardware replication or time redundancy.

Hardware replication of the whole system (or its main modules) allows us to compare
various signals in replicated system modules.

Since hardware replication is expensive for many applications, an alternative solution
is developed based on a comparison of results obtained in repeated computations (time
redundancy). These computations can be performed for the same program or its various
versions (N-version programming).

Many system-level error detection mechanisms that result in low hardware and time
redundancy [22] are presented. They are based on monitoring various system character-
istics from valid memory access checking to sophisticated control flow checking.

A control flow graph (CFG), with nodes representing a program unit (a block of
instructions) and arcs specifying possible paths within the program, defines the structure
of a program. Many control flow checking schemes are based on associating signatures
(tags) with CFG nodes. These schemes use different program units as nodes, different
definitions of signatures, and monitoring techniques.

Assigned signatures are associated arbitrarily with the program nodes. Derived sig-
natures are calculated from the contents of nodes. Schemes that use assigned signatures
check for node executions in an allowed sequence, while techniques based on derived
signatures verify the contents of nodes and the succession of nodes. The verification
process requires a description of the valid program control flow. This data can be in-
cluded in the monitored system program or in the watch-dog program (a mixed solution is
also possible).

 Design for Testability of Real-Time Systems for Industrial Process Control 61

We can implement assigned signature schemes as software or hardware watchdogs. In
the first case the system invokes a checking subroutine each time signature verification or
updating is needed. The hardware watchdog program, which is designed around the
monitored system's CFG, can be based on an interpreted or a compiled tracing technique.
Each time a tag is received for checking, the interpreting program refers to the CFG
structure stored in the watchdog memory. Compiled graph tracing is faster. It also does
not require a separate data structure to represent the CFG because it is embedded into the
watchdog program. (Each node of the CFG is represented by a watchdog program seg-
ment.) External processors (single-chip computers) or some partially used resources of the
monitored system can serve as the watchdog circuit.

Many systems are realized with derived-signature control flow checking capability.
The simplest detectors of this class are watchdog timers (WDTs) that check program
execution time [22]. WDTs restart sequences embedded into application program initial-
ize WDTs periodically. If not initialized (due to an error) within a specified time, the WD
Timers generate error signals. That signal usually activates the microprocessor non-
masked interrupt causing the system restart.

Assume a WDT checks the lower (T-Tw) and upper (T) bounds of a program segment's
(CSi) execution time (ti) and parameters T and Tw can be fixed for all segments. We can
estimate the probability pij (Tw) that an erroneous branch from segment CSi into segment
CSj (with execution time tj) is detected by the WDT:

pij (Tw) = [(ti + tj -T)2 + (T - Tw)2] / (2 ti tj) .

The optimal situation arises for ti = tj = T-Tw /2. By decreasing Tw, we can achieve
quite good error coverage. However this requires knowledge of program execution time
(estimated with special programs). Most popular WDTs check only the upper bound (Tw
= T). In this case maximal value of pij (Tw=T) is 0.5. One such WDT is a part of moni-
toring module shown in Figure 7.

6.3. Application-level

Application-level detection mechanisms are related to the realized algorithms in the
system and properties of generated results (acceptable ranges of variables, reasonableness
of computation results). For many systems we can find effective checking rules at the
application level (algorithm-based techniques), for example, by means of assertions. An
assertion is an invariant relationship between program variables or system output signals.
Assertions can be defined by making use of various properties of the problem or algo-
rithm. They are usually based on the inverse of the problem, the range of variables, and
the relations between them. Sometimes this solution involves the introduction of a check
variable. When the system controls a physical object, the behavior of this object (in re-
sponse to system stimuli) may be described by some rules that the detector can check.

Application-level detectors may generate false alarms (in the absence of errors) due to
imprecise checking rules or round-off errors. So we must check for the preservation of
these rules within tolerance.

62 M. JEVTIĆ, M. DAMNJANOVIĆ

7. TEST PROCEDURES IN RTS

Some on-line testing techniques require software support, so it is necessary to have the
self-test task in an RTS. It means that scheduler must provide time for self-test. The
global self-test task is realized through the individual self-test task of the system elements.
The individual self-test task can have different priorities and different running periods
regarded to its influence on reliable system functioning.

Test-task Fault-free Fault-detect
 start test end test end

Fig. 11. State diagram of an test procedure

Any self-test procedure, disregarding the starting way, can be represented by state
diagram shown in Fig. 11. During the error reporting phase, after error detection (ED), the
fault causing that error is reported as transient fault. But, if the same error is reported k

NMI (fatal error)

 System restart

Fig. 12. State diagram of a fatal error procedure

 Fault handling

 Safe state

Error reporting

Perform

test

Permanent
fault

handling

Transient
fault

handling

Error

reporting

Safe
state

Degraded

state
ED

 Design for Testability of Real-Time Systems for Industrial Process Control 63

times (practically, k = 2) within a specified time window, the fault will be labeled as
permanent. In case of permanent fault detection, RTS must be set to safe state or degraded
state, and the system has to start functioning in the way predicted for that situation.

Some faults in RTS can be fatal for the system and its environment. They are usually
detected as hardware event on nonmasked processor interrupt input having the task sup-
porting the system set to safe-security state (Fig. 12.). In fact, these faults require some
kind of system restart.

8. CONCLUSION

Since design for testability has become a necessity in electronic system design, a
systematic procedure for RTS design with emphasis to system testability implementation
must be considered. Here, it is highlighted that to be successful, DFT must deal with test
problems in all phases of a product's life. To enable this, designers and test engineers can
introduce test requirements and strategies early in the design cycle.

The on-line testing techniques considered in this paper are important for realization of
the RTS which must have predicted functioning in case of failure (safety hard real-time
system). Such systems often need sensors and actuators with built-in self-test (like smart
sensors).

Considered modifications of some test techniques have the task to enable easy, fast
and cost-effective testing of the elements of RTS and the entire RTS, with insignificant
processor-time consuming. Good combination of these techniques on circuit-, system-,
and application-level, can result in RTS with desired characteristics and cost-effective-
ness.

Of course, a convenient methodology for design process automation (which is not
considered here) must be used with these testing techniques.

REFERENCES
1. Bernd Koenemann, Ben Bennetts, Najmi Jarwala, Benoit Nadeau-Dostie, Built-In Self-Test: Assuring

System Integrity, IEEE Computer, Vol. 29, No. 11, November 1996, pp.39-45.
2. Manthos A. Tsoukarellas, Vasilis C. Georgianis, Kostis D. Economides, Systematically Testing a Real-

Time Operating System, IEEE Micro, Vol. 15, No.5, October 1995, pp.50-60.
3. S. Bhawmik, P. Palchaudhuri, DFT Expert: Designing Testable VLSI Circuits, IEEE Design & Test of

Computers, Vol. 6, No. 5, October 1989, pp. 8-19.
4. M. Abramovici, M. Breuer, A. D. Friedman, Digital System Testing and Testable Design, Computer

Science Press, New York 1990.
5. Harold P.E. Vranken, Marc F. Witteman, and Ronald C. van Wuijtswinkel, Design for Testability in

Hardware-Software Systems, IEEE Design & Test of Computers, Vol. 13, No.3, Fall 1996. pp.79-87.
6. Lemos, A. Saeed, and T. Anderson, Analyzing Safety Requirements for Process-Control Systems, IEEE

Software, Vol. 12, No. 3, May 1995, pp. 42-53.
7. Scott Davidson, Software Tools for Hardware Test, IEEE Computer, Vol. 22, No. 4, April 1989, pp.

12-14.
8. K. D. Shere, R. A. Carlson, A Methodology for Design, Test, and Evaluation of Real-Time Systems,

IEEE Computer, Vol. 27, No. 2, Febr. 1994, pp. 35-48.

64 M. JEVTIĆ, M. DAMNJANOVIĆ

9. Vishwani D. Agraval, Charles R. Kime, Kewal K. Saluja, A Tutorial on Built-In Self-Test, Part 2:
Applications, IEEE Design & Test of Computers, Vol. 10, No. 2, pp. 69-77, June 1993.

10. Janusz Sosnowski, Transient Fault Tolerance in Digital Systems, IEEE Micro, Vol. 14, No. 1, February
1994, pp. 24-35.

11. Douglas M. Blough, and Andrzej Pelc, Diagnosis and Repair in Multiprocessor Systems, IEEE
Transactions on Computers, Vol.42, No. 2, February 1993, pp. 205-217.

12. Beth A. Schroeder, On-line Monitoring: A Tutorial, IEEE Computer, Vil. 28, No. 6, June 1995, pp.72-78.
13. Bernhard Platner, Real-Time Execution Monitoring, IEEE Trans. Software Eng., Vol. SE-10, No. 6,

Nov. 1984, pp. 756-764.
14. M. Jevtić, W. Weber, B. Đorđević, A Database For Integrated Design of Microcomputer Based

Systems, Facta Universitatis, Series: Electronics and Energetics, Vol.4, No.1., pp. 13-27, 1991.
15. M. Jevtić, M. Damnjanović, Testing of Digital Systems in Real-Time Applications, Proceedings 20th

International Conference on Microelectronics - MIEL'95, Vol.2, pp. 835-840, Ni{, Serbia, Yugoslavia,
September 1995.

16. J. McClaskey, Design Techniques for Testable Embedded Error Checkers, IEEE Computer, Vol. 23,
No. 7, July 1990, pp. 84-88.

17. Pat McHugh IEEE P1149.5 Module Test and Maintenance Bus, IEEE Design & Test of Computers,
Vol. 9, No. 4, pp. 62-65, Dec. 1992

18. M. Jevtić, M. Damnjanović, G. Cvetković, On/Off Input-Output Module with Built-In-Self-Test,
Proceeding of YU INFO '95, Brezovica, April 1995.

19. S. Kundu, S. M. Reddy, Embedded Totaly Self-Checking Checkers: A Practical Design, IEEE Design &
Test of Computers, Vol. 7, No. 3, August 1990, pp. 5-12.

20. S. Narayanan, R. Gupta, Optimal Configuring of Multiple Scan Chains, in IEEE Transactions on
Computers, Vol.42, No. 9, September 1993, pp. 1121-1131.

21. E. Fujiwara, D. K. Pradhan, Error-Control Coding in Computers, IEEE Computer, Vol.23, No. 7, July
1990, pp. 63-72.

22. A.Mahmood and E. J. McClaskey, Concurrent Error Detection Using Watchdog Processors, IEEE
Trans. on Computers, Vol. C-37, No. 2, 1988, pp. 160-174.

23. M. Jevtić, M. Damnjanović, TESTING OF DIGITAL SYSTEMS IN REAL-TIME APPLICATIONS,
Proceedings 20th International Conference on Microelectronics - MIEL'95, Vol.2, pp. 835-840, Niš,
Serbia, September 1995

24. Milun Jevtić, Milunka Damnjanović, AN APPROACH TO DESIGN FOR TESTABILITY IN HARD
REAL-TIME SYSTEMS, Proceedings 21th International Conference on Microelectronics - MIEL'97,
Vol.2, pp. 849-852, Niš, Serbia, September 1997.

25. Milun Jevtić, Milunka Damnjanović and Vladimir Živković, A SOLUTION TO RUN-TIME
MONITORING OF REAL-TIME SYSTEMS, Proceedings of First Conference on Electrical Engineering
& Electronics, December 1998. Gabrovo, pp. 272-277.

26. Dennis K. Peters, David Lorge Parnas, Requirements-Based Monitors for Real-Time Systems, IEEE
Transactions on Software Engineering, Vol. 26, No. 2, February 2002, pp. 146-158.

27. Milun Jevtić, Marko Cvetković, Sandra Brankov, TASK EXECUTION IN REAL-TIME SYSTEMS
FOR INDUSTRIAL CONTROL AND MONITORING, Electronics, Faculty of Electrical Engineering
University of Banjaluka, vol. 6, no. 2 december 2002, pp. 56-61

28. G. Lima and A. Burns, "An Optimal Fixed-Priority Assignment Algorithm for Supporting Fault-
Tolerant Hard Real-Time Systems", IEEE Transaction on Computers, Vol. 52, No. 10, pp. 1332-1346,
October 2003.

29. Milun Jevtic, Volker Zerbe, Sandra Brankov, “Multilevel Validation of On-Line Monitor for Hard Real
Time Systems“,Proc. 24th International Conference on Microelectronics - MIEL 2004, Vol. 2, pp. 755-
758, Nis, Serbia and Montenegro, 16-19. may, 2004.

30. Tsai J., Fang K., Chen H.: "A Noninvasive Architecture to Monitor Real-Time Distributed Systems",
IEEE Computer Society, Vol. 23, pp. 11-23, 2004.

31. S. Đošić and M. Jevtić, "Scheduling in RTS Using Time Redundancy for System Recovery After Faults",
Proceedings of papers, Indel 2004, Banja Luka, pp. 146-149, November 2004.

 Design for Testability of Real-Time Systems for Industrial Process Control 65

32. Nelly Delgado, Ann Quiroz Gates, and Steve Roach, A Taxonomy and Catalog of Runtime Software-
Fault Monitoring Tools, IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 30, NO. 12,
DECEMBER 2004, pp. 859 - 872

33. Jovanovic B., Jevtic M.: "Module for run-time monitoring in PC hardware based real-time system",
Proc. Int. Scientific Conference - Unitech 09, Gabrovo, Bulgaria, 2009.

34. Christian Colombo, Gordon J. Pace and Gerardo Schneider, Safe Runtime Verification of Real-Time
Properties, Book: Formal Modeling and Analysis of Timed Systems, Springer Berlin / Heidelberg, ISSN
0302-9743 (Print) 1611-3349 (Online), Volume 5813/2009, pp. 103-117.

PROJEKTOVANJE ZA TESTABILNOST SISTEMA ZA RAD U
REALNOM VREMENU ZA UPRAVLJANJE INDUSTRIJSKIM

PROCESOM

Milun Jevtić, Milunka Damnjanović

Ovaj rad razmatra proveru sistema za rad u realnom vremenu u cilju pouzdanog rada i zaštite
sredine sistema od oštećenja Razmatra se sistematičan postupak za projektovanje sistema za rad u
realnom vremenu sa akcentom na implementaciji mogućnosti provere sistema. Opisan je pristup
projektovanja za testabilnost (DFT) rigidnih sistema za rad u realnom vremenu pomoću nadzora.
U tekstu će biti reči o različitim primenjenim tehnikama on-line provere na nivou kola, sistema i
primene. Modifikacije nekih tehnika u cilju postizanja boljeg odnosa između prostornih i vremen-
skih rešenja i troškova pouzdanog sistema za rad u realnom vremenu, takođe su razmatrane. Ovaj
rad takođe opisuje realizaciju nadzora rada sistema za rad u realnom vremenu koji se može koris-
titi za formalnu verifikaciju nekih vremenskih karakteristika projekta, kao i da omogući provere
rada. Cilj nadzora u realnom vremenu je da održi performanse sistema u opsegu koji ne menja
raspored i vreme procesa.

Ključne reči: Projektovanje, Sistemi za rad u realnom vremenu, Testabilnost, Nadzor rada,
Tolerisanja otkaza, Vremenska redundansa

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

