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Abstract. Real-time-systems testing for the reliable functioning and protection of the 
system environment from damages is considered in this paper. A systematic procedure 
for real-time systems design with emphasis to system testability implementation is 
considered. The approach to design for testability (DFT) of hard real-time systems by 
monitoring is described. Different applied techniques for on-line testing on circuit-, 
system- and application-level are discussed. The modifications of some techniques 
made in order to accomplish the effective trade-off between space/time overhead and 
the cost of dependable real-time-system, are considered too. This paper also describes 
a realization run-time monitoring of real-time systems that can be used to verify 
formally some properties in design time, and to enable run-time checks. The goal of 
real time monitoring is to keep system performance within a range that does not 
change the order and timing of events. 
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1. INTRODUCTION 

Increased emphasis on shortening the time to first customer delivery, improving qual-
ity, effectively managing design complexity, and reducing overall life cycle costs drives 
designers to find more efficient ways to perform design verification and prototype test. 
The traditional design methodology of digital circuits and systems assume the test proce-
dure and test sequence generation after the system or circuit logic design is completed. 
However the complexity of recent circuits and systems caused the need for too long time 
for test sequence generation or made it impossible. From another point of view, system 
testability affects the cost of prototyping and production testing and is very closely related 
to system reliability. During hardware-software integration, unanticipated iterations arise 
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that can cause significant schedule delays. Detecting and isolating these events or prob-
lems can add weeks or months to tight schedules [1], [2]. To solve this problem, circuit 
designers use design-for-testability (DFT) methodology [3], [4], [24]. A designer can di-
rectly affect a system's degree of testability and diagnosability by considering its test and 
diagnosis requirements as design requirements, not as test requirements decoupled from 
the design process. 

To be successful, DFT must deal with test problems in all phases of the product's life 
[5]. Designers and test engineers can introduce test requirements and strategies early in 
the design cycle. They can also use the procedures that some methodology provides for 
test strategy selection and DFT implementation at the chip, multichip module, board, and 
system levels. 

DFT strategy selection and implementation activities operate on successive refine-
ments of a design, starting at the system specification level and continuing to the hardware 
and software physical-implementation level. 

Testability is of special importance in RTS (Real-Time Systems) - systems whose 
correctness depends not only on their logical and functional behaviour, but also on the 
timing properties of this behaviour. They can be classified as hard RTS, in which the 
consequences of missing a deadline may be catastrophic, and soft RTS, in which the con-
sequences are relatively milder. 

Hard RTS testing include testing of functional behaviour and testing of timing prop-
erties. It is necessary to obtain it as on-line testing - system testing during its functioning 
and without degradation of system properties. 

The application of the Real-Time-Systems (RTS) to control and monitor the processes 
like industrial, chemical or other processes dangerous for humanity and human environ-
ment and/or processes which can cause very expensive damages, states the additional 
specific requirements to designers [6]. Namely, it is important not only to accomplish 
properly monitor and control functioning with high reliability, but to predict the system 
behaviour in case of fault and error occurrence. For that reason, during the designing of 
these RTS, in addition to classical reliability consideration, the stabile provision of prop-
erly functioning hardware and system software resources (dependability) and the ability 
of a system to continue to function, perhaps at reduced capacity, in the presence of faults 
(responsiveness) must be considered. 

One of the goals during real-time system designing process is to create a predictable 
real-time system. So, RTS testing is very important for the properly functioning verifica-
tions for the fabricated circuit or system, and for that performances achieving as well [7], 
[8]. The performance achieving states the necessity of testing (test procedure driving) 
during the circuit or system functioning in real time. This is known as on-line testing, in 
contrast to off-line testing when the circuit or system under test is not in working state but 
in special test environment. 

Most test techniques work effectively by reducing the complexity of the circuit to be 
tested or by increasing controllability and observability. 

To make the on-line testing possible, a circuit or system must have self-test possibility. 
So, the Built In Self Test (BIST) [9] was implemented on both - circuit and system level. 
RTS testing includes hardware, software and real time characteristics checking (real-time 
characteristics satisfaction). 
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Based on on-line testing, it is easy to accomplish the system function properly after 
some faults are detected in the system because permanent faults cause only a small frac-
tion of all detected errors, as compared with transient faults [10]. Transient faults are 
induced mainly by outside disturbances such as power jitter, electromagnetic interference, 
ionization due to cosmic rays, or alpha particles from packaging materials. Of course, 
there is a class of intermittent faults - faults that occur from time to time, but in RTS they 
are classified either as transient faults or as permanent faults (in case of multiple fault 
occurrence in defined time-interval). 

Here we identify critical design points and outline some practical solutions that refer 
to efficient on-line detectors (detecting errors during system operation) and error-handling 
procedures. The on-line testing techniques are to be considered as very important in 
finding the trade-offs between real-time system characteristics degradation caused by test 
accomplishing, and system cost. Some new modifications of the existing techniques for 
these purposes are presented in this paper. Also, a systematic procedure for design of RTS 
with emphasis to system testability realization is considered. An approach to DFT of hard 
RTS by monitoring is described and some base functions for its implementation are 
defined. 

2. CONVENTIONAL STRATEGIES FOR TESTING REAL-TIME SYSTEMS 

Before we start considering on-line testing techniques, let's consider base strategy of 
testing RTS. [23] 

There are at least three primary strategies for testing and evaluating control systems [8]. 
The sequential test environment shown in Figure 1. is the least complex. This strategy 

uses stored scenario data to drive the system under test. Test results are stored and ana-
lyzed. 

 
Scenario                      Test                      Analysis 

 
 
 
 

Fig. 1. Sequential test environment (     Real-time task) 

In this case, the only process running in real time is the system under test. The stored 
scenario data is generated off line before test execution. The stored scenario data can be 
either recorded operational and environmental data, or it can be simulated data produced 
by a scenario generation process. 

This approach has some disadvantages: 
• The success or failure of the test is unknown until the analyses are completed. 

Analyses are completed some time after the test is completed. Depending on the 
schedules at the test facility, it may be necessary to tear down the test setup and 
subsequently rebuild it if more tests are required. 

• The scenario data must be rebuilt if a test needs to be suspended before comple-
tion because problems are observed. Generating a scenario can be a lengthy 
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process. If this is not done in real time, there could be significant down time while 
a new test scenario is generated. 

• Test scenarios cannot be changed dynamically. It is not possible to observe the 
test in progress and ask "what if" questions. 

 
Scenario                      Test                      Analysis 

 
 
 
 

Fig. 2. Real-time scenario generation test environment 
(      Real-time tasks) 

A more complicated simulation test environment involves conducting the control 
system test in real time as the scenario data is generated. This simulation test environment 
is called the real-time scenario generation test environment and is illustrated in Figure 2. 
In such a simulation environment, the data analysis is done off line, but the scenario 
generation and actual test are conduced in real time. 

The real-time scenario generation and analysis test environment in Figure 3. is the 
only simulation test environment where all three procedures (generate scenario data, 
conduct test and analyze test data) are executed in real time.  
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Fig. 3. Real-time scenario generation and analysis test 
environment   (     Real-time tasks) 

It is good to concentrate on the real-time scenario generation and analysis test envi-
ronment because this type of environment is useful in all phases of the life cycle. 

For many large systems, all three testing environments are needed during the devel-
opment life cycle. As a rule, the test approach to be implemented should maximize the 
amount of real-time testing. 

The previous considerations are generally accepted when the systems with small 
number of processors are of interest. When the systems with great number of processors 
are the matter (like hyper-cub topologies), sequential testing consideration enters the 
scope of probabilistic model for the errors and test results [11]. 
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3. RUNTIME MONITORING IN RTS 

In software engineering, monitoring is the recording of specified event occurrences 
during program execution in order to gain runtime information that can not be obtained 
merely by studying the program text. The monitored information includes the runtime 
behaviour of the monitored program and pertinent information from the operating sys-
tems. In past years, researchers have used monitoring methods to gather information 
through different forms of instrumentation techniques for program testing and debugging, 
dynamic task scheduling, performance analysis, and program optimization [12], [13], 
[26]. 

The goal of real time monitoring is to keep system performance within a range that 
does not change the order and timing of events. Monitoring system is itself a system with 
real time constraints. Monitoring can be achieved at various levels. Low-level monitoring 
fetches every signal transmitted on the buses. High-level monitoring detects only process-
level events. Instrumentation code is inserted manually or automatically as in breakpoint 
techniques. For events recognition, instrumentation code is inserted at specified points 
where it can generate the information pertaining to the events of interest. The monitored 
events should be events that are indicative of system behaviour. 

Monitoring can occur either synchronously with application execution or asynchronously 
to the execution. Synchronous checking, or assertion checking, requires that the user add 
assertions to the application code. Assertions are checks to determine if, for a particular 
section of software, the relevant parts of the system state (for example variable values or I/O 
signals) are within the bounds needed for that section to operate properly. Assertions are 
placed directly in the application and can only be checked when encountered during execu-
tion. If more frequent checking is needed, asynchronous checking must be used. Asynchro-
nous checking is done in an external process that receives events from the application.  

Here, real-time monitoring is considered as system testing and debugging tool [25]. 
Namely, if we add the checking capability to the functions for events monitoring, which is 
not a great effort after HRTS integration and testing during the design process, it is easy 
to accomplish the testing of the timing characteristics of the events during the system's 
functioning [27],[30] . 

There are three broad approaches to monitoring: hardware, software and hybrid ap-
proach. 

3.1. Software Monitoring Approach 

There are two software monitoring techniques.  
1.  One technique embeds the monitoring code inside the target program. This tech-

nique is not transparent. 
2.  The other technique embeds the monitoring code inside system kernels or treats the 

monitoring code as a process separated from the target code's process. This method is 
transparent but less flexible. 

Software monitoring, which requires event detection and event data collection, can be 
described in the following ways: 

• The target program detects the events and collects the event data. 
• The target program detects the events and the monitor collects the event data. 
• The kernel detects the events and the monitor collects the event data. 
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All three implementations have their advantages and disadvantages [32]. Implement-
ing both event detection and event collection inside the target program is the easiest and 
most straightforward way to monitor the system. Performing event detection and event 
collection at the kernel level has two advantages over that at the program level: one is 
transparency, and the other is the reduction of monitoring perturbation. Transparency is 
easily achieved because users do not need to modify their target programs for event de-
tection and event collection. Perturbation is reduced because context switching between 
the target program and the kernel is avoided. In contrast, the execution of event detection 
at the program level requires system call. This results in extensive context switching be-
cause system calls are implemented with interrupts to the kernel. However, event though 
the kernel level approach reduces the perturbation, the extra monitoring overhead im-
posed on the kernel still slows down the kernels and increases the target program's exe-
cution time. 

3.2. Hardware Monitoring Approach 

In general, monitoring hardware is used to monitor the runtime behaviour of either 
hardware devices or software modules. The former is used in the performance measure-
ment of hardware devices, such as measuring cache accesses, cache misses, memory ac-
cess time, total CPU time, total execution time, I/O requests, I/O grants, and I/O busy 
time. Monitoring software modules are used in debugging and in performance analysis of 
such software characteristics as program bottlenecks, dead locks, and the degree of par-
allelism. It seems that these two uses of monitoring are quite different, but the results of 
hardware performance measurement can also help in software performance analysis and 
debugging. For example, bottlenecks may be seen to arise from frequent references to the 
same memory location and deadlocks from messages locked within the communication 
network, while the degree of parallelism may be determined by dividing the total CPU 
time by the total execution time. 

3.3. Hybrid Monitoring Approach 

Hybrid monitoring consists of software instrumentation and hardware detection - that 
is, a compromise between hardware and software monitoring. The target program being 
monitored is first instrumented manually or automatically to generate events, then a 
hardware monitor is used to detect the events and to collect the corresponding event data. 
The hardware monitor can be designed as a permanent part of the target system during the 
design phase, or it can be an individual device or coprocessor integrated into a target 
system during the testing and debugging phase. 

When the hardware monitor is implemented as a part of the target system, the steps for 
monitoring are as follows: 

1.  The event class to be monitored is defined and the memory for each class is allo-
cated. 

2.  The instrumentation code is inserted into the target program. 
3.  The target program is compiled with the instrumentation code, and a monitoring 

symbol table is constructed for the instrumentation code. 
4.  The object code of the instrumented target program is linked and loaded so that the 

object code responsible for monitoring will flag the occurrence of an event, and write the 
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event, including the event class and its relevant information, into the preallocated memory 
space reserved in step 1 for that event class. 

5.  A hardware monitoring device snoops and matches the bus signal to the address allo-
cated to the event class. An event is detected if the monitoring hardware device detects the 
address bus signal matching one of the preallocated addresses of the event classes. 

When the hardware monitoring is implemented as a coprocessor, the steps for moni-
toring are as follows: 

1.  The event class to be monitored is defined and the memory for each class is allocated. 
2.  The instrumentation code is inserted into the target program. 
3.  The target program is compiled with the instrumentation code, and a monitoring 

symbol table is constructed for the instrumentation code. 
4.  The object code of the instrumented target program is linked and loaded so that the 

object code responsible for monitoring is executed by a dedicated monitoring coprocessor. 
5.  The monitoring coprocessor executes special monitoring instructions such as write, 

which quickly constructs and stores the event trace into a high-speed RAM inside the 
coprocessor. 

3.4. Monitoring Implementation Functions 

Both, hardware and software realized monitoring functions for embedding in the ap-
plication code or in operating system kernel level are seen as a set of library procedures, 
usually in C language.  

The observable events in a HRTS are specified by annotating real time programs with 
those events that are to be monitored at run-time. Examples of these events include start 
or completion of a program segment, and assignment to a state variable. A system con-
straint can be viewed as an assertion on the relationship between the occurrences of these 
observable events. The proposed approach distinguishes between a system constraint that 
is embedded in a RT program and a constraint that is monitored asynchronously by a 
separate task. Prototype implementation allows the specification and monitoring of both 
types of system constraints. In particular, the implementation supports annotating C pro-
grams with events and specifying system constraints. 

In order to monitor system functioning through time by using the observable points, 
function events is needed. The initiation and completion of a sequence of program state-
ments can be denoted by inserting this function to the source code as a label. 

... 
Ei(em,tmin,tmax) -> 
statement_S 
Ek(ej,tmin,tmax) <- 
... 

Fig. 4 Code fragment with label events 

The right pointing-arrow specifies the event ei which denotes the start of the statement 
that follows (statement_S), and the left-pointing-arrow specifies the end of the previous 
statement. If tmin = tmax = 0, the function only stores the time of event occurrence, e.g. ei 
related to the last occurrence of event em. For the defined tmin , tmax ≠ 0, the function 
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provides checking whether or not the event, e.g. ei, occurred inside the specified time 
interval, to initiate the adequate system functioning by the operational system.  

This approach has two purposes: it separates the timing concerns from the functional 
specification of the program and it allows the expression of deadline and delay properties. 
It is assumed that (1) two occurrences of the same event can not happen simultaneously, 
(2) event names are unique across the system of tasks, and (3) there exists a single 
monotonically increasing clock, accessible to all tasks. 

Our approach considers the use of monitoring information to aid in scheduling task in 
real-time environment [29]. The monitored information is fed back to the operating sys-
tem for achieving an adaptive behaviour. 

Particular types of the observable events are assignments of values to a variable re-
ferred to as watchable variable. If variable v is declare by 

watchable_v v(vmin,vmax,Δv) 

any assignment of the value to it is considered as event, and if  vmin,vmax ≠0 and 
Δv≠0 is defined, checking is done if the value is inside the defined interval, and if the 
absolute change of the value related to the last previous value greater than Δv. 

Event history is generated in the system by storing the times and/or values of watch-
able variables. For event history survey during the prototype behaviour testing and for 
event reconstruction during the system functioning, two other functions (on the software 
kernel level) are needed: @(e,i) and  @val(v,i). @(e,i) is the occurrence 
function which returns the time of ith occurrence of the event e (i can be negative for 
event referring backward). @val(v,i) is the function which returns the value of 
watchable variable v on ith event of its change. 

3.5. RT Task Monitoring Scenarios 

RT tasks can be divided into pre-emptive and non pre-emptive tasks. Concerning its 
execution time, pre-emptive tasks, unlike the non pre-emptive, do not have strict limits. 
Also, their possible failure in execution would not affect significantly the proper func-
tioning of RTS. Therefore, the scheduler can pause the execution of such tasks when re-
ceiving execution request from some higher priority RT task. After the execution of high 
priority task scheduler continues the execution of previously paused task. On the other 
hand, non pre-emptive tasks execution failure, or execution outside given time limits can 
lead to whole RTS failure. Because of this, high priorities are assigned to these tasks, and 
they can not be paused while running. 

Non pre-emptive RT tasks: Possible course of non pre-emptive task (τi) execution is 
shown on Figure 5. 

 
Fig. 5. Monitoring scenario of non pre-emptive task execution 
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From the moment – event rk when the request for task τi execution occurred, allowed 
delay to starting the task execution can be checked at first. This is important for the tasks that 
do not initiate with some external interrupt event. These tasks are “set” in the queue for 
execution by some internal event. In the case of exceeding the interval Bi, monitoring timer-
counter generates a hardware interrupt request, and error Error_B is detected. Another 
monitored time interval is task execution time (CPU time). For task execution time which is 
shorter than Ci (minimum required time for correct task execution), marker Error_C- is set. 
In the case of exceeding the task execution time Ci + Δi (maximum time for correct task 
execution) monitoring module generates interrupt request to detect error Error_C+.  

Such monitor performs over each RT task. Upon detection of any of these errors, it is 
the policy of the planner and available time what will be taken. Restarting the same task 
or starting an alternative task (λi) execution which will overcome given situation can be 
done. For each task, deadline Di for its execution should also be monitored. Special 
counter-timer is the most suitable for this purpose. In the case of its exceeding, interrupt 
request is generated and hardware-software security task (Tsi) is started. This security task 
should recover RTS or place it in a safe condition.  

Pre-emptive RT tasks: Monitoring of pre-emptive tasks τi (Figure 6) differs from the 
previous monitoring scenario. While its execution is stopped because of a higher priority 
task τj, its monitoring timer-counter should be stopped (during Cj). 

 
Fig. 6. Monitoring scenario of pre-emptive task execution 

3.6. Hybrid On-line Process Monitoring Module 

Depending on the application and environment, timing constraints imposed on a RTS 
vary widely. Here presented FPGA based monitoring module [33] would be applicable to 
each RTS determined to meet strict timing constraints imposed by the real world proc-
esses. FPGAs are chosen because of their low cost and ability for reconfiguration. 

Posing the demand that on-line monitoring do not require significant CPU time and 
clumsy additional specialized hardware, this paper presents one way of FPGA imple-
mentation of hybrid on-line RTS monitoring. It is intended for RTS based on an industrial 
PC and Linux operating system which is widely accepted and available open source 
system in RTS. 

The system is based on additional hardware module with 32 programmable timer-
counters and interrupt logic. Each monitored process has assigned its own timer-counter. 
Timers-counters are used as devices for defining the moments of events’ time occurrence 
as well as watchdog i.e. monitoring timers for checking the correct timing execution of 
the processes. In addition, simple software primitives for on-line monitoring implemen-
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tation are realized. They can be activated from the desired place in application program 
code. For monitoring of the processes and tasks in RTS without modification of applica-
tion program code, simple modification of the operating system task scheduler and dis-
patcher is predicted. Modification ensures that scheduler or dispatcher, with every change 
of process/task status, activates appropriate software primitive for controlling timer and 
checking the time constraints. 

For minimal intrusion and using of CPU time during monitoring, hardware module for 
PCs PCI slot is realized as shown in Figure 7.  

 

 
Fig. 7. PCI card with hybrid on-line monitoring module 

From Figure 7 it can be seen that the interface from monitoring module to RTS con-
sists of the following signals: DataBus, Read, Write, INTR, INTA, sl and clr. DataBus 
is a 16 bit bidirectional bus. It transmits the data from RTS to monitoring module and vice 
versa. RTS activates Read (Write) signals every time it needs to read data from (write 
data to) monitoring module. Monitoring module sets INTR (Interrupt request) signal 
every time any of currently executing tasks do not execute properly or execute outside of 
the required time interval. As a response, RTS reads the message from DataBus and sets 
INTA (Interrupt Acknowledge) signal. The message contains information about the 
interrupt nature and the ID of the task that caused interrupt. It is now scheduler policy to 
determine the actions that will be taken. When receiving Interrupt Acknowledge, 
monitoring module resets INTR signal and continues to monitor RTS. 

Signal sl is 3 bit select used by RTS when selecting the register from which to read 
data (or selecting the register to write data to). The use of this signal will be explained 
later in more detail. Signal clr has a function of clear signal and it is used by RTS to reset 
monitoring module. 
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Monitoring module is controlled by software primitives from RTS and has the fol-
lowing functions: 

• Setting the working mode of the timers-counters, 
• Setting the time constraints, 
• Enabling the timers-counters, 
• Disabling the timers-counters, 
• Reading the timers-counters, 
• Timers-counters interrupt processing and 
• Comparison of the timers-counters state with time constraints. 

During the system verification phase monitoring system provides information about 
system timing characteristics and creates a log file. During the system operation it should 
detect deviations from predicted timing behaviour. These deviations could be the possible 
consequence of a failure in RTS. Thereby, monitoring system has two working modes. 
First mode refers to the system analysis. It performs with the purpose to measure the 
execution time of every RT task. The obtained information can be used for the future 
control of the RTS. In the second mode monitoring module has the function of built-in 
selftesting based on a watchdog function. It checks the upper and lower time limit at the 
tasks and periodic and quasi-periodic events level. The activation of each task initiates the 
procedure of starting its assigned timer-counter. Monitoring timer-counter sets to 
previously defined maximum task execution time and starts its countdown. If the excess 
of time interval occurs, monitoring module sets interrupt request. If the task is complete 
before time excess, timer-counter stops its countdown with the end of task execution. 
Monitoring module reads its state and checks whether the task is executed before the 
minimum needed execution time. If the task is executed in regular time intervals RTS 
continues to work. Otherwise, scheduler starts provided procedure for system recovery 
from detected error. In this way, predicted behaviour of HRTS is ensured. 

Implemented system monitors up to 32 processes i.e. RT tasks and events that execute 
in parallel. The number of monitored processes is relatively small, but it should be said 
that HRTS in industrial applications do not have a lot of processes. But since our moni-
toring module for 32 processes requires only 23% of FPGA ALTERA EP2C35F672C6N 
resources, as will be seen later, the number of monitored processes can be easily ex-
panded up to 150. 

4. SYSTEMATIC APPROACH TO RTS DFT 

If hardware/software co-design is assumed as a method for microcomputer systems 
design [5], [14], [28] the activities for testability achieving are as is shown in Fig. 8. As 
can be seen, the testability design activities are distributed through all design phases. 
During the system specification defining, the uniform testing requirements have to be 
stated, taking into account the requirements for system testing during 

•  system design, 
•  system production, 
•  system functioning and 
•  system maintenance.  
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Fig. 8. Systematic Approach to Real-time System DFT 

For efficient achieving of today's hard RTS testing requirements, it is necessary to use 
BIST approach on all levels - application, system, subsystem, board, and chip level. So, if 
principles of operation are considered, error detection mechanisms can be divided into 
corresponding levels (application, system and circuit level) [34]. 

Various on-line error detectors can be incorporated in the computer system [15]. The 
basic principle of these detectors is the use of redundancy in 

•  devices (hardware replication), 
•  information (redundant codes), 
•  software or 
•  execution time. 
The functions from function-set for BIST implementation, defined on system level, are 

further developing into more detailed functions for hardware and software testing. Always 
looking for the tradeoffs between system redundancy and test efficiency, the BIST 
functions are implemented as hardware, software, or (in most cases) hardware-software 
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combination. The third case is dominant because it introduces minimal hardware/software 
redundancy for enabling testability with flexible test running. Even in BIST or scan 
technique implementation in hardware module or chip testing, to accomplish on-line (run-
time) testing, what is needed is software control (start and break) for test running and, if 
wanted, test results checking. 

In safety-critical RTS, the software testing phase may cost from three to five times as 
much as any other phase of the software life cycle. Usually, testing begins early in the 
development process, as test planning and specification overlap, to certain degree, with 
requirements specification. 

Aspects of general testing strategies and techniques also apply to real-time software. 
However, additional requirements and difficulties characterize an effective testing process 
for a real-time software for several reasons: 

• The software contains several modules and decision statements. 
• Many modules use the same resources simultaneously. 
• The same sequence of test cases may produce different outputs, depending on when 

the test is performed. 
• System errors may be time dependent, only arising when the system and controlled 

environment are in a particular state that may be impossible to reproduce. 
• Finally, reliability, schedule, and performance requirements are usually more critical 

than those for non-real-time software. 
The strategy followed for testing an RTS is systematic and includes individual func-

tion, module, and bottom-up integration, using black-box and white-box disciplines. 

5. REDUNDANCY IN RTS  

Besides the basic function of Control RTS, different features such as the following 
might be required: 

• high reliability (high probability of continuous proper function over a given, long 
interval), 

• high availability (relatively low percentage of repair times), 
• minimum time to recover from a detected fault, 
• extremely low failure rates for short time periods, 
• extremely high probability of transition to a safe final state after occurrence of a 

malfunction,  
• easy and timely diagnosis of faults or defects (on-line diagnosis). 
• safety and security (are the abilities to protect the system from inadvertent misuse or 

from malicious attempts to destroy system functionality, 
• high dependability (the stable provision of properly functioning hardware and 

system software resources), 
• responsiveness (the ability of a system to continue to function, perhaps at reduced 

capacity, in the presence of faults, also without delaying critical process deadlines). 

These performances achievement is closely connected to redundancy implementation. 
Redundancy in space and time [31] as fundamental resources of the RTS (Figure 9.), 
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Otherwise, space-time trade-off considering has the cost-effective RTS as an aim, al-
though time often plays the most critical role. 

 
Space                                     Space 
 
 
 
 
 
          Basic                                      Redundant 
         system                                        system 
 

                                    Time                                      Time 

Fig. 9. Basic and redundant RTS 

A global review of different redundant systems is shown in Fig. 10. Some approaches 
use great hardware (space) redundancy but need very low time redundancy to provide 
reliable functioning through error detection (error-correcting codes, duplex system, triple-
modular redundancy, etc.). Others need great time redundancy (multiprocessor rollback 
and recovery, N-version programming, etc.) 
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Fig. 10. Space-time overhead for redundant approaches 
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Error correcting codes, depending on code distance, detect and correct any number of 
bit errors. 

Duplex system starts the error handling procedure in case of two different results oc-
currence. 

If three identical components are used, i.e. in the case of triple modular redundancy, 
the results are compared via majority voting circuits. If one of the results differs from the 
other two, it is masked out. 

N-version programming provides comparison of results obtained in N various versions 
of the program. 

In backward recovery, an attempt is made to restore the system to a safe previous 
state. 

For forward recovery, an attempt is made to correct the system state. 
Boundary scan provides primary an easy testing on circuit and module (PCB) level in 

off-line mode. However, the on-line testing of particular modules can be accomplished in 
time intervals when they are not active. It needs small additional hardware and a diag-
nostic test-routine. 

BIST, based on scan technique, is inadequate for on-line testing the modules that are 
continuously functioning but can easily be used in system dependability providing by 
minimal software expanding and insignificant  processor-time consumption. On system 
level, BIST can be implemented in concurrent or nonconcurrent form. 

In control RTS, BIST as general approach realized by different (even ad-hoc) tech-
niques of self-testing is a very good solution. 

6. ON-LINE ERROR DETECTORS – ERROR DETECTION MECHANISMS 

Various on-line error detectors can be incorporated in a computer system. The basic 
principle of these detectors is the use of redundancy in 

• devices (hardware replication), 
• information (redundant codes), 
• software or 
• execution time. 
Taking into account principles of operation, we can divide error detection mechanisms 

into three levels: 
• circuit, 
• system (functional), and 
• application. 

 
6.1. Circuit level  

Circuit-level detection mechanisms are implemented using error detection codes, self-
checking circuits, and duplicated complementary circuits [16]-[19].  

A circuit is self-checking for a set of faults F if for any fault in F there exists a valid 
input code that detects this fault. Scan and BIST techniques implemented in VLSI circuits 
support this detection mechanism [9], [20]. BIST technique implementation can result in 



60 M. JEVTIĆ, M. DAMNJANOVIĆ 

a significant space overhead, but it doesn't need slightly processor time for testing, except 
for the starting and essential test output analyzing 

Error detection code applied to any functional unit provides error detection and cor-
rection. In general, a code can correct up to r bit errors and detect up to e additional bit 
errors if and only if 

2r + e + 1  <   Hd , 

where Hd is the Hamming distance of the code (minimum number of positions in which 
any two code words differ). So, simple parity codes (Hd = 2) assure detection of any sin-
gle-bit errors and all multiple-bit errors with an odd number of bit position changes. But 
some other codes can detect and correct a number of errors: Hamming codes, Cyclic Re-
dundant Codes (CRC), AN cod (special code for arithmetic units), etc. [21] 

Circuit-level detectors are quite effective for some system blocks such as memories or 
communication subsystems. For other blocks the cost/error coverage ratio may not be 
satisfactory for many applications, and thus system-level detectors have recently received 
much attention. 

6.2. System-level 

System-level detection mechanisms can be regarded as "guardians" around the system 
operation that check out invalid activities or information at a higher level than the previ-
ous ones. They verify system operations by functional assertions on program control flow, 
memory accesses, and so on. Thus, these detectors verify the correctness of the system 
operation by checking its various general properties. The most effective system detectors 
use hardware replication or time redundancy.  

Hardware replication of the whole system (or its main modules) allows us to compare 
various signals in replicated system modules. 

Since hardware replication is expensive for many applications, an alternative solution 
is developed based on a comparison of results obtained in repeated computations (time 
redundancy). These computations can be performed for the same program or its various 
versions (N-version programming). 

Many system-level error detection mechanisms that result in low hardware and time 
redundancy [22] are presented. They are based on monitoring various system character-
istics from valid memory access checking to sophisticated control flow checking. 

A control flow graph (CFG), with nodes representing a program unit (a block of 
instructions) and arcs specifying possible paths within the program, defines the structure 
of a program. Many control flow checking schemes are based on associating signatures 
(tags) with CFG nodes. These schemes use different program units as nodes, different 
definitions of signatures, and monitoring techniques. 

Assigned signatures are associated arbitrarily with the program nodes. Derived sig-
natures are calculated from the contents of nodes. Schemes that use assigned signatures 
check for node executions in an allowed sequence, while techniques based on derived 
signatures verify the contents of nodes and the succession of nodes. The verification 
process requires a description of the valid program control flow. This data can be in-
cluded in the monitored system program or in the watch-dog program (a mixed solution is 
also possible). 
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We can implement assigned signature schemes as software or hardware watchdogs. In 
the first case the system invokes a checking subroutine each time signature verification or 
updating is needed. The hardware watchdog program, which is designed around the 
monitored system's CFG, can be based on an interpreted or a compiled tracing technique. 
Each time a tag is received for checking, the interpreting program refers to the CFG 
structure stored in the watchdog memory. Compiled graph tracing is faster. It also does 
not require a separate data structure to represent the CFG because it is embedded into the 
watchdog program. (Each node of the CFG is represented by a watchdog program seg-
ment.) External processors (single-chip computers) or some partially used resources of the 
monitored system can serve as the watchdog circuit. 

Many systems are realized with derived-signature control flow checking capability. 
The simplest detectors of this class are watchdog timers (WDTs) that check program 
execution time [22]. WDTs restart sequences embedded into application program initial-
ize WDTs periodically. If not initialized (due to an error) within a specified time, the WD 
Timers generate error signals. That signal usually activates the microprocessor non-
masked interrupt causing the system restart. 

Assume a WDT checks the lower (T-Tw ) and upper (T) bounds of a program segment's 
(CSi) execution time (ti ) and parameters T and Tw  can be fixed for all segments. We can 
estimate the probability pij (Tw ) that an erroneous branch from segment CSi into segment 
CSj (with execution time tj ) is detected by the WDT: 
 

pij (Tw) = [(ti + tj -T)2 + (T - Tw )2] / (2 ti tj ) . 
 

The optimal situation arises for ti =  tj  = T-Tw /2. By decreasing Tw, we can achieve 
quite good error coverage. However this requires knowledge of program execution time 
(estimated with special programs). Most popular WDTs check only the upper bound ( Tw 
= T ). In this case maximal value of  pij (Tw=T) is 0.5. One such WDT is a part of moni-
toring module shown in Figure 7. 

6.3. Application-level 

Application-level detection mechanisms are related to the realized algorithms in the 
system and properties of generated results (acceptable ranges of variables, reasonableness 
of computation results). For many systems we can find effective checking rules at the 
application level (algorithm-based techniques), for example, by means of assertions. An 
assertion is an invariant relationship between program variables or system output signals. 
Assertions can be defined by making use of various properties of the problem or algo-
rithm. They are usually based on the inverse of the problem, the range of variables, and 
the relations between them. Sometimes this solution involves the introduction of a check 
variable. When the system controls a physical object, the behavior of this object (in re-
sponse to system stimuli) may be described by some rules that the detector can check. 

Application-level detectors may generate false alarms (in the absence of errors) due to 
imprecise checking rules or round-off errors. So we must check for the preservation of 
these rules within tolerance. 
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7. TEST PROCEDURES IN RTS  

Some on-line testing techniques require software support, so it is necessary to have the 
self-test task in an RTS. It means that scheduler must provide time for self-test. The 
global self-test task is realized through the individual self-test task of the system elements. 
The individual self-test task can have different priorities and different running periods 
regarded to its influence on reliable system functioning. 

Test-task         Fault-free                      Fault-detect 
    start              test end                           test end 
 
 
 
 
 
 
 
 
 
 
 
      
 
      
 
 
 

Fig. 11. State diagram of an test procedure 

Any self-test procedure, disregarding the starting way, can be represented by state 
diagram shown in Fig. 11. During the error reporting phase, after error detection (ED), the 
fault causing that error is reported as transient fault. But, if the same error is reported k  

NMI  (fatal error)         
 
 
 
 
 
 
 
 
 
 
    System restart 

Fig. 12. State diagram of a fatal error procedure  

 Fault handling 

 Safe state 

Error reporting 

 
Perform 

test 

Permanent 
fault 

handling 

Transient 
fault 

handling 

   
Error 

reporting 

 
Safe 
state 

 
Degraded 

state 
ED 



 Design for Testability of Real-Time Systems for Industrial Process Control 63 

times (practically,  k = 2) within a specified time window, the fault will be labeled as 
permanent. In case of permanent fault detection, RTS must be set to safe state or degraded 
state, and the system has to start functioning in the way predicted for that situation. 

Some faults in RTS can be fatal for the system and its environment. They are usually 
detected as hardware event on nonmasked processor interrupt input having the task sup-
porting the system set to safe-security state (Fig. 12.). In fact, these faults require some 
kind of system restart.  

8. CONCLUSION 

Since design for testability has become a necessity in electronic system design, a 
systematic procedure for RTS design with emphasis to system testability implementation 
must be considered. Here, it is highlighted that to be successful, DFT must deal with test 
problems in all phases of a product's life. To enable this, designers and test engineers can 
introduce test requirements and strategies early in the design cycle.  

The on-line testing techniques considered in this paper are important for realization of 
the RTS which must have predicted functioning in case of failure (safety hard real-time 
system). Such systems often need sensors and actuators with built-in self-test (like smart 
sensors). 

Considered modifications of some test techniques have the task to enable easy, fast 
and cost-effective testing of the elements of RTS and the entire RTS, with insignificant 
processor-time consuming. Good combination of these techniques on circuit-, system-, 
and application-level, can result in RTS with desired characteristics and cost-effective-
ness.  

Of course, a convenient methodology for design process automation (which is not 
considered here) must be used with these testing techniques. 
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PROJEKTOVANJE ZA TESTABILNOST SISTEMA ZA RAD U 
REALNOM VREMENU ZA UPRAVLJANJE INDUSTRIJSKIM 

PROCESOM 
 

Milun Jevtić, Milunka Damnjanović 

Ovaj rad razmatra proveru sistema za rad u realnom vremenu u cilju pouzdanog rada i zaštite 
sredine sistema od oštećenja Razmatra se sistematičan postupak za projektovanje sistema za rad u 
realnom vremenu sa akcentom na implementaciji mogućnosti provere sistema. Opisan je pristup 
projektovanja za testabilnost (DFT) rigidnih sistema za rad u realnom vremenu pomoću nadzora. 
U tekstu će biti reči o različitim primenjenim tehnikama on-line provere na nivou kola, sistema i 
primene.  Modifikacije nekih tehnika u cilju postizanja boljeg odnosa između prostornih i vremen-
skih rešenja i troškova pouzdanog sistema za rad u realnom vremenu, takođe su razmatrane. Ovaj 
rad takođe opisuje realizaciju nadzora rada sistema za rad u realnom vremenu koji se može koris-
titi za formalnu verifikaciju nekih vremenskih karakteristika projekta, kao i da omogući provere 
rada. Cilj nadzora u realnom vremenu je da održi performanse sistema u opsegu koji ne menja 
raspored i vreme procesa.  

Ključne reči: Projektovanje, Sistemi za rad u realnom vremenu, Testabilnost, Nadzor rada, 
Tolerisanja otkaza, Vremenska redundansa 
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