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Abstract. A finite element methodology is developed for the static and dynamic
analysis of large order historical masonry structures and applied to the case of the
Arta bridge under plane stress conditions. The inelastic material behavior is simulated
with the aid of the theory of continuum damage. The particular theory of damage used
is a combination of the Mazars and the Faria and Oliver theories and is characterized
by simplicity and successful modeling of the mechanical behavior of masonry
structures. In addition, this theory permits the easy calculation of damage indices for
the various parts of the structure and the damage index of the whole structure as well.
The above finite element method is used to analyze statically and dynamically
(seismically) the historic Arta bridge under conditions of plane stress and under both
elastic and inelastic material behavior.

1. INTRODUCTION

The knowledge of the static and/or dynamic response of a historical structure before
and after a possible conservation intervention or strengthening is absolutely essential for
the determination of its strength and the location of those areas where damage can occur.
Basic knowledge on the mechanical behavior of masonry structures can be obtained by
studying the excellent book of Tassios (1987).

The determination of the response of complicated geometrically historical masonry
structures requires the use of numerical methods of analysis, such as the finite element
method. This method is capable of performing static or dynamic analyses of these
structures assuming inelastic material behavior (Zienkiewicz and Taylor, 1991). The
extensive review article of Beskos (1993-94) on the subject of the use of finite and
boundary elements for the analysis of monuments and special structures contains all the
relevant bibliography up to 1993. Interesting articles on the topic of the analysis of
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historical structures by analytical or experimental methods can be found in the recent
books of Brebbia and Lefteris (1995), Sanchez-Beitia and Brebbia (1997), Rocca et al
(1997), Crocci (1998) and Brebbia and Jager (1999).

Elastic analyses of masonry structures can be done very easily by using two- and
three- dimensional finite element computer programs, but they do not provide realistic
solutions. Reliable solutions are provided by inelastic analyses, which combine the finite
element method with a certain model of inelastic behavior of the masonry material.

In general, the existing models of the mechanical behavior of masonry materials can
be classified into two large categories, the discrete and the continuum ones, (Beskos,
1993-94). Discrete models are used for the analysis of monumental structures composed
of large discrete parts, such as stone arch parts or stone drums of columns of ancient
temples. In this case, the discrete elements of the structure are assumed to behave
elastically, while the behavior of the contact surface between them is assumed to be
described by a unilateral friction law. Continuum models are used for masonry structures
composed of a combination of bricks or stones and mortar at their surfaces of contact.
The mechanical behavior of the continuum models can be described by a stress-strain law,
which is derived from an one-phase or a two-phase model of the masonry material
(Beskos, 1993-94).

The one-phase models consider the masonry as consisting of a single material, whose
phenomenological behavior is described by an inelastic theory (theory of no-tension,
theory of plasticity, theory of damage). Models of this category have been recently used
in the framework of the finite element method by, e.g., Onate et al (1996), Alves and
Alves (1997), Lourenco et al (1997), Papa and Nappi (1997) and Genna et al (1998). The
two-phase models take into account the different inelastic behavior between the two
components of the masonry (brick or stone and mortar) as well as the anisotropy induced
by them and on the basis of a homogenization theory result into an inelastic stress-strain
law of the masonry material in the framework of the theory of plasticity or damage.
Models of this category have been used recently in conjunction with finite elements by,
e.g., Swan and Cakmak (1993), Stavrakakis et al (1996), Pegon and Antoine (1997),
Luciano and Sacco (1998) and Lopez et al (1999).

The one-phase models are obviously simpler than the two-phase ones and for this
reason they can be very successfully used for the analysis of three-dimensional structures
of large size and great geometrical complexity. In the present work an one-phase model
for masonry structures with different strengths in tension and compression and brittle
behavior is employed. This model is created by combining the damage theory of Mazars
(1986) and the one by Faria and Oliver (1993). Use of this model in the framework of the
finite element method enables us to analyze statically and dynamically (seismically) the
historic Arta bridge under plane stress conditions. This bridge has been previously
analyzed for its own weight and seismic loading (applying it statically) by Plainis (1992),
assuming linear elastic material behavior and plane stress conditions.

2. FORMULATION AND SOLUTION OF THE PROBLEM

Use of the finite element method requires the discretization of the structure into NE
finite elements with NN nodes in total. In this work, masonry structures are analyzed



Static and Dynamic Analysis of the Arta Bridge by Finite Elements 43

under plane stress conditions. Thus, linear isoparametric quadrilateral plane stress
elements with four nodes (at their corners) are selected. These elements are better than the
corresponding triangular ones because of their higher accuracy and better than the
quadratic quadrilateral ones because the latter ones are more computationally expensive,
especially for large size problems (Lepi, 1998).

The matrix equation of motion of a structure in the framework of the finite element
method has the form (Karabalis and Beskos, 1997)

[M J{u +[Cl{u} +{R} = {F} )

where [M] and [C] are the mass and damping matrices, respectively, {R} = {R(u)} is the
vector of the internal reaction forces (for linear elastic material behavior one has
{R}=[K]{u}, where [K] is the stiffness matrix), {ii}, {u} and {u} are the vectors of

acceleration, velocity and displacement of the structure, respectively and {F'} is the vector
of the external loads. The solution of the above equation (1) can be obtained by the
employment of a time integration scheme. Here the step-by-step time integration
algorithm of Newmark is employed. Thus, the solution of equation (1) requires the
application of two groups of steps, where the first group corresponds to the basic
computations (Table 1), while the second one is repeated at every time step (Table 2).

Table 1. Application of Newmark’s algorithm for non-linear (inelastic) dynamic analysis

PARTA

Step 1: Selection of parameters B and y. The values of B=1/4 and y=1/2 are selected,
which correspond to the case of the average acceleration method.

Step 2: Computation of the initial conditions on the basis of the equation of motion and the
use of {u} ={uy} and {u}={u,y}

Step 3: Selection of the time step At.

PARTB

Step 1: Computation of the vector of the effective external loads from

{BR ) = {AR}+§‘%[M]{W}+2[C]W}E 2

Step 2: Computation of the effective stiffness matrix from

[Kyy)=[KP1+ 1 (C] +§[M] 3)

where [K”] is the secant stiffness matrix computed with the aid of the damage d (see
section 3) in every finite element.

Step 3: Computation of the vector of the displacement increment with the aid of the
modified iteration method of Newton-Raphson (see Table 2).
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Step 4: Computation of the vector of the velocity increment of the structural nodes

(i =2 (Dl - 20 @)
Nt

Step 5: Computation of the vector of the acceleration increment of the structural nodes

L 4 4 -t
(Dt =A_z2{Au} T W2t ©)

Step 6: Computation of the new values of displacements, velocities and accelerations
™ = '+ (B
Ty = iy + (i (©6)
™y = i) + (i

Table 2. Modified iteration method of Newton-Raphson

Step 1: Initial values are assumed for the vectors {u(’g)m }>1F o)) AR}

Step 2: The following vectors are computed repeatedly until convergence occurs
[KP1{Du g} = (AR )} O {Du b = [KPTHAR )
ey} = G+ (B}
180} = {Fy} = (Fyy} *+ (K g 1=K 1) {uty
{OR )} ={OR )} — B0}

O]

3. DETERMINATION OF DAMAGE

The stiffness matrix of inelastic structures is not constant but varies as the loading on
the structure varies. Thus, in the framework of the finite element method, the secant
stiffness matrix is evaluated on the basis of the value of the damage at every Gauss point
of every element and at every time step. That value of the damage is determined by using
the damage evolution law provided by the damage theory employed. In this work use is
made of the FOM damage model. This is a combination between the elastic-damage part
of the elastoplastic-damage model of Faria and Oliver (1993) with two damage indices
(one for compression and one for tension) and the damage theory of Mazars (1986),
which unifies appropriately these two indices into one index.

With the above FOM damage model, all the basic characteristics of the mechanical
behavior of brittle type of materials like masonry, i.e., the different behavior in tension
and compression, the reduction of stiffness and strength with deformation, the localization
of deformation and the mesh independent character of the FEM solution are taken into
account. The FOM model, in addition to its relative simplicity with respect to other
damage models, is capable of taking into account the strength increase under biaxial or
triaxial stress states observed in experiments. The application of the FOM model requires
the execution of the five steps of Table 3.
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Table 3. Computational procedure for the FOM damage model

Step 1: Computation of the effective strains <g¢> and >¢;< from the principal strains {g;}
where i = 1,2,3 and {e}=[B]{u}
<g; >=g; >g, <=0 g >0
and when ()
<g; >=0 >g, <=¢ € <0

and the equivalent strains in tension and compression

2 2
£ =5<e > and €= [3>e < ©)
i=1 i=1

from the effective ones
Step 2: Computation of the effective true stresses <0; > and >0, < from the true

principal stresses { O; } which are obtained from { G }=[D]{€}

<0,>=0; >0,<=0 g, >0
_ and _ _ _  when _ (10)
<0;,>=0 >0,<=0; 0;,<0
and the equivalent stresses in tension and compression from the effective ones
—— 3o _ ~— 3 — 2
6 =>>0;< and 0 =,5(>0;<) (11)

i=1 i=1
Use of Hooke’s law to compute the strains in tension and compression from the effective
true stresses

{€'}=[D]{<0, >} and {£7}=[D]"'{>T; <} (12)
Step 3: Determination of the parameters o and o of the deformation
t T T
a+=u and o =% _k (13)
2k k
where
3 erEr +E _ 3 _E(sF+E
k+:zHi+ l(:+21) and k ZZHl l(,\i_zl) (14)
= (€") = ()
with
H} =1 H =1 (& +&)<0
and for (15)
H=0 H =0 (E +€)=0

Step 4: Computation of the equivalent effective tensile and compressive stress (see Step 2)

T =< >/ [D]{<T >} (16)

T =\V3(KG,, +T,.,) (17)

where K is a material constant given by

and

K:ﬁﬂ with R():fo_;w (18)
1-2R, 01D

and the octahedral stresses are given by
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O = and T, =136 @) (19)
Step 5: Computation of the evolution of the damage indices d and d~ during the
deformation from

R s NN
d*=1-2e¢ 5 "5 and 4 =1-L(1-47)-47%e "7 (20)
T T
where
+ _ fz - — 2 RO
1 = and r, =.[.]— X 21
0 \/E 0 \/;1—21?0 fc ( )

and A", A~ and B~ are parameters determining the descenting branch of the stress-strain
diagram. These parameters depend on the tensile f; and compressive f; strength, the
fracture energy G, and the internal length scale I'. A detailed determination of them is
described by Faria & Oliver (1993). The total damage index d is finally computed with
the aid of relations (13) and (20) as

d=a'd+a’d (22)
The tensor of the total stresses is then computed as
{0} =(1-d){c} =(1-d)[D]{g} (23)

Relation 23 is used to determine the secant stiffness matrix at every time step. The
total one-dimensional stress-strain curve and the bounding damage surface in the two-
dimensional stress space for the FOM model are shown in Figure 1.
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Fig. 1. The bounding surface of damage model FOM

4. ANALYSIS OF THE ARTA BRIDGE
4.1. Introductory remarks about the bridge

The Arta bridge is built in the city of Arta, Epirus, Greece over the river Arachthos. It
appears that the bridge was erected during the 13™ century A.D., even though there is
historical evidence indicating that a bridge had been built in the same location during the
classical or the Hellenistic period. This bridge is well known all over Greece because of
the difficulty its builders had in erecting it, a fact that led to the composition of a popular
song, which is still sang in Greece even to this day. Since 1960 the bridge is used
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exclusively as a pedestrian bridge. A few years ago the bridge was reinforced and
retrofitted and serves as a tourist attraction for the city of Arta.

The structure consists of four main arches with spans of 23.95 m, 15.83 m, 15.43 m
and 16.16 m, while there are various relief openings above the piers. The width of the
superstructure of the bridge at the top is 3.70 m, while the net width of the road is equal to
3.00 m. The material parameters of the bridge have been determined to have the following
values: modulus of elasticity £ = 3.0 GPa, Poisson’s ratio v = 0.22, uniaxial compressive
strength f.=30.0 MPa, biaxial compressive strength f-p=34.8 MPa and mass density
p=2700 kg/m’. Three different values of uniaxial tensile strength (f;=0.30, 0.40 and
0.50 MPa) and fracture energy (G,= 20, 40 and 60 N/m) are examined (cases I, II and III,
respectively). The finite element mesh used to discretize the bridge is shown in Figure 2.

Fig. 2. Discretization of the structure

4.2. Elastic and inelastic static analysis

The structure is initially loaded statically by its own weight and the analysis shows
nowhere any damage. Subsequently, the structure loaded by its own weight is additionally
subjected to a ground settlement & at the support of pier number 2. With an increase of
the support yielding, a state of stress is created, which leads to damage, mainly at the ends
of the arches on either side of the yielded support, as shown in Figure 3 for the case of
fi=0.5MPa, G/=60.0 N/m and 6 =50 mm. The observed local damage is due to the
development of tensile stresses there in excess of the tensile strength of the masonry.
Thus, increase of the tensile strength there, e.g., by reinforcing steel bars, can lead to a
decrease of the damage in both local and global level.

The total damage index D for the whole structure can be obtained in terms of the local
damage index d at every point of the total volume Q of the structure in accordance with
the suggestion of Cervera et al (1995) as

D =[[o(d)*dQ/[,dQ (24)

Fig. 3. Damaged region of the structure with settlement 6 = 50 mm
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Figure 4 depicts the global damage index D for various values of the settlement o for
the three cases I, IT and III.
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Fig. 4. Total damage-settlement diagram of the structure

4.3. Elastic and inelastic dynamic analysis

The bridge is now assumed to be subjected to a seismic excitation described by the
first 5 secs of the N-S component of the El Centro 1940 earthquake and depicted in
Figure 5 in the form of an acceleration versus time curve.

HooaM A..A/\An /\/LA AA
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Fig. 5. Ground acceleration of ElCentro (1940) earthquake (N-S direction)

The above accelerogram acts on the structure along the horizontal direction of the
bridge (the same at all the pier bases simultaneously), while the same accelerogram
multiplied by the reduction factor 2/3 acts along the vertical direction of the bridge (the
same at all the pier bases simultaneously).

According to the Greek seismic code N.E.A.K. (1995) the maximum expected ground
acceleration in the Arta region is equal to 16% of the gravity acceleration, while the El
Centro accelerogram of Figure 5 shows a maximum ground acceleration of 34%. Hence
the El Centro accelerogram is multiplied by the reduction factor 0.47 (= 0.16/0.34) for the
horizontal and by 0.31 (= [0.16/0.34] x 2/3) for the vertical component of the applied to
the bridge seismic excitation. The bridge was analyzed by assuming elastic and inelastic
material behavior with f;= 0.3 MPa and G, =20 N/m (case I). Figure 6 shows the time
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history of the horizontal displacement of the top of pier number 2 of the bridge for the
elastic and inelastic case and for the load combination “self-weight + earthquake”. Figure
7 provides a picture of the damage distribution in the bridge for the above load
combination and indicates that the damage concentrates at the upper part of the bridge,
while the piers show no damage.
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Fig. 6 . Horizontal displacement time history

Fig. 7. Damaged region of the structure: 'self weight + earthquake' load combination

5. CONCLUSIONS

In the present work a finite element method of analysis of historical masonry
structures exhibiting linear elastic or inelastic material behavior under static or dynamic
loading was presented. The inelastic behavior is successfully simulated in an efficient
manner by a continuum damage theory for brittle materials. This method was used to
analyze the response of the historic Arta bridge under plane stress conditions to static and
seismic loads. For this structure and for the various loading cases, the local and global
damage indices were determined. From the various analyses one can conclude that the
probable ground settlements at one or more pier supports and the seismic excitation stress
the bridge considerably creating damage at critical areas. On the contrary, the bridge
response to self-weight is purely elastic with nowhere any damage. Finally, one can also
observe that the inelastic material modeling is essential for a realistic determination of the
bridge response and the critical and hence sensitive areas of the structure to the various
loading conditions.
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ANALIZA MOSTA ARTA NA STATICKA I DINAMICKA
DEJSTVA PRIMENOM METODE KONACNIH ELEMENATA

G.D. Hatzigeorgiou, D.E. Beskos,
D.D. Teodorakopoulos, M. Sfakianakis

Metoda konacnih elemenata je razvijena i za staticku i dinamicku analizu velikih konstrukcija
drevnog zidarstva i primenjena je u slucaju mosta Arta pod uslovima ravanskog stanja napona.
Neelasticno ponasanje materijala se simulira uz pomo¢ teorije oStecenja kontinuma. Posebna
teorija oStecenja koja je koris¢ena u kombinaciji sa teorijama Mazara, Farie i Olivera i koja je
karakteristicna jednostavnoséu i uspesnim modelovenjem mehanickog ponaSanja zidanih
konstrukcija. Uz to, ova teorija omogucava lako izracunavanje indeksa oStecenja za razlicite
delove konstrukcije kao i indeks Stete cele konstrukcije. Pomenuta metoda konacnih elemenata je
koriséena da se izvrsi analiza statistickih i dinamickih tj. seizmickih dejstava na istorijskom mostu
Arta pod uslovima ravanskog stanja napona pri elasticnom i neelasticnom ponasanju materijala.



