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Abstract. The cables of cable-stayed bridges have a non-linear behaviour caused by
their shape variation, when the stress conditions change. This is a most interesting
theme, namely, the study of the effective cable modulus of elasticity on the exactness of
the analysis, during the erection of the bridges.

In the present paper, we examine the influence of the neglected component of the
weight of the cable, which is parallel to the direction of the chord of the cable. We
obtain an easy used and useful formula by means of which we can estimate the
exactitude of the well-known Dischinger’s formula and, also, Hajdin’s and other’s one.
We, finally, draw useful diagrams.

1. INTRODUCTION

When the stress conditions change, the cables of a cable-stayed bridge demonstrate a
non-linear behaviour, due to the change of their shape. The mostly used of the methods of
analysis of such bridges, require linearity of the modulus of elasticity of the cables. That
is the reason, which conducts us to the use of an equivalent modulus of elasticity.

The first who discussed this aspect of the problem was F. Dischinger [1], who, some
years later, gave the expression of the equivalent tangent modulus of elasticity, by his
well-known formula. Afterwards, H. Ernst [2] gave the equivalent secant modulus of
elasticity.

There is a great number of papers on this topic that has prevailing been called
Dischinger's formula [3], [4], [5], [6], [7], [8]-

On the study of the equivalent modulus of elasticity, we, usually, accept two
assumptions.
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The first one is the use of a parabolic shape for the inclined cable instead of its real
form, which is the catenary (the influence of this assumption is, maximum, about 0,05%,
for full-loaded cables).

The second is the neglect of the component of the weight of the cables, which is
parallel to the chord of the cable.

In the present paper we examine the influence of this last assumption and we obtain an
easily used formula, which contains terms that express the neglected component. That
modulus, which is symbolized with E, is used to study the change of the ratios
E

%% and % , where E the known modulus of elasticity of the material of the cable and
D
Ep Dishinger’s effective cable modulus of elasticity. In this study the following quantities are
used as parameters: A, the area of the cross-section of the cable, £, the length of the cord of
the cable and p, the angle between the cord of the cable and the horizontal axis.
From the diagrams that are obtained by the described method, we can estimate the
influence of the above mentioned assumption and, also, determine the conditions under

which we can use that assumption.

2. ANALYSIS
Notes:

1. The quantities a,b,s are known and therefore:
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are known.

2. We suppose that the equation of the catenary is expressed (with an acceptable
accuracy for small values of the deformation w) by the following equation of a parabola
of second order:
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which has been refered to the axes oxz of Fig. 1.

Then we can find that : dw = —2fi2 E 3)
dx - O
Putting:
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We can write the equilibrium of half of the
cable as shown in Fig. 2.




About the Equivalent Modulus of Elasticity of Cables of Cable-Stayed Bridges 571

62 )
Tf- gZ ng Ov(x) [dx =0 or

1 62 3 <2 E
f=— g, ff(1-—=)dx
= % 7 esl[0- g
From the last equation we have:
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q and finally we can write:
T +T,
-5 gy 2
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\ 2 3T-2g,0
f Substituting f from equation (5) in equation (3) we get:

¢ 2
d_W = —2f12 = - 3gZ6 GXT = - 3gZX @ (6)
T, dx ) 3T-2g,0 & 3T-2g,0 E

'8 Now let us consider the infinitesimal element

AB = ds of the cable ik at position x, loaded by its own weight and by the tensile forces T.
Under deformation line AB will be moved to the new position A'B'.
From Fig. 3 we can find:

dx+u+du=u+(l+e)dx cosw and
w+dw —w= (1 + g)dx sin®

Finally we can write:

dx+du = (1+¢)dx cos®
dw =(1+¢)dx sin®

Extending cos® and sino in form of a Maclaurin's

Fig. 3. series we have:

2 4 2

coswW =1—£+£—... 1 _&D

21 4 20

O

sinw = w—£+£—...Dw J

305! H

Then, we can change equs. (6) as follows:

o o2 o 0
du +dx = (1+¢&)dx(1 ——) dx +&dx — dXT —&dx TE
dw = (1 +€)dx.0 = dxw+ edxw H

Neglecting the infinitesimal values of the higher order terms (wEdx), (w'[Eldx) we get:
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And then, for the tensile force we have:

0
T:A.O:A.s.E:A.E.gﬂ+l Wgu
Eix ZDdXDE
and finally:
du T 1 H
u_T 1HwHb )
dx EA ZDdeE

Equation (9) because of equation (6) can be written as follows:

do_ T 10 38 Hxd
dx EA 2 BT-2g,6 00O
The elongation of the cable is given by the following equation:

_%du, _SHT 10 3g,8 2H _ors 10 3g,3 ;oo
S P e E%g"“a 252050 & B3 8

4 . . . .
Remembering that o = 3 for a loading on the bridge that gives tensile force T, we get:

AC_ T _ 14 3g.t % (11)
¢ EA 24 B3T-g/t B

Analogically, for a loading on the bridge that gives tensile force T we will have:

M_ T 103 AH
== _—-— =5 Op (12)
¢ EA 24[BT-gHp

Then, the deformation of an equivalent system of a chord that would be elongated by a
tensile force AT is:

pp=80 A T-T 1M 3t o H 3ef @ (13)
¢ ¢ EA 24PT-g/ EBT—gXKH




About the Equivalent Modulus of Elasticity of Cables of Cable-Stayed Bridges 573

But we know that: A€ = % = (14)

E A

Taking into account equations (13) and (14) we can write:

O
AU gl 3ef o H 38!l Heg
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1 1 03T-g,0)*-(3T-g)* 0
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Or finally :
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And finally we obtain the following expression for the equivalent modulus of elasticity
of the cable:

EA = EA 5 (15)
. Berled
, FAG,0) 358
24 7
[TT - (T + T)+ Mg 0
H 03 0f
Putting g, = 0 we obtain the formula of paper [8]:
O
_ EA 0
EA = 0O (16)
1+iBgégEA(T+T) O
24T TO H

And for T= T we obtain Dischinger’s formula:

O
.

EA = 0 (17)
O
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3. NUMERICAL RESULTS AND DISCUSSION

For an illustrated example, we use the new Cable Bridge in Poland, which has been
designed by the first of the authors. In table 1, the characteristics of the 14 cables of
different lengths, inclinations and areas are shown. In table 2 is shown the error (on per
cent), because of the neglect of the inclined component of the weight of the cables.

Table 1
(cable characteristics)

G.S. 50% of Full ~ Full
Area Tension  Tension
No (m) (deg) (sz) (kN/m) (KN/m) (kN/m) (kN) (kN)
87 135.30 27.51 256.31 2.26 2.00 1.04 8060.5 16121
88 119.12 28.18 276.32 2.43 2.14 1.15 8437.5 16875
89 102.96 29.05  230.14 2.03 1.77 0.98 7859.0 15718
90 86.83 30.26  229.37 2.02 1.74 1.02 7782.0 15564
91 70.75 32.01 280.17 2.47 2.09 1.31 9524.5 19049
92 54.79 34.78 168.56 1.48 1.22 0.85 5726.0 11452
93 39.05 39.81 153.94 1.35 1.04 0.87 5262.5 10525
94 187.00 19.53 267.08 2.35 222 0.79 7205.5 14411
95 163.72 20.10  237.83 2.09 1.97 0.72 8119.0 16238
96 140.45 20.85  228.60 2.01 1.88 0.72 7778.5 15557
97 117.22 21.91 224.75 1.98 1.83 0.74 7611.0 15222
98 94.05 23.50 228.60 2.01 1.84 0.80 7760.0 15520
99 71.00 26.11 163.94 1.44 1.30 0.64 5544.5 11089
100 48.23 31.22 157.79 1.39 1.19 0.72 5359.0 10718

Cable Length Inclination Weight gz 2x

Table 2
(numerical results)

Cable Full Tension 50% of Full Tension

No A B A B
87 -2.897 % -0.0441 % -7.235% -0.1359 %
88 -2.254 % -0.0306 % -5.721 % -0.0972 %
89 -1.223 % -0.0133 % -3.143 % -0.0427 %
90 -0.955 % -0.0096 % -2.445 % -0.0303 %
91 -0.619 % -0.0054 % -1.589 % -0.0169 %
92 -0.350 % -0.0025 % -0.901 % -0.0080 %
93 -0.134 % -0.0007 % -0.349 % -0.0023 %
94 -8.695 % -0.1489 % -20.042 % -0.4286 %
95 -3.522 % -0.0434 % -8.734 % -0.1342 %
96 -2.765 % -0.0313 % -6.900 % -0.0963 %
97 -2.064 % -0.0211 % -5.178 % -0.0650 %
98 -1.257 % -0.0109 % -3.200 % -0.0340 %
99 -0.712 % -0.0052 % -1.826 % -0.0163 %
100 -0.276 % -0.0015 % -0.716 % -0.0050 %

 (BEA)g _(EA)‘V 5. EAex ~ EA)ngjain o

EA) 7 (EA)n



About the Equivalent Modulus of Elasticity of Cables of Cable-Stayed Bridges 575

In this last table we compare the values we got from the proposed formula for the
equivalent modulus E to these of the well-known tangential E (columns A) and, also, to
these which are given by Hajdin’s formula (columns B), for full tension of the cables and
for 50% of the full tension.

We notice that the error of the second comparison is small and that Hajdin’s formula
is acceptable for its exactitude.

Finally, two indicative diagrams for the cable 94 and 95 are shown.
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EKVIVALENTNI MODUL ELASTICNOSTI KABLOVA
KOD VISECIH MOSTOVA

N. Hajdin, G.T. Michaltsos, T.G. Konstantakopoulos

Kablovi kod vise¢ih mostova imaju nelinearno ponasanje izazvano promenom njihovog oblika
tokom naprezanja. Proucavanje ekvivalentnog modula elsaticnosti kablova je jako zanimljiva tema
jer direktno utice na tacnost analize tokom proracuna a zatim i na samo ponaSanje izvedenog
mosta.

U radu je ispitivan uticaj zanemarivanja komponente sopstvene teZine kablova koja je
paralelna sa njihovom osom. Izvedena je korisna formula koja je jednostavna za primenu a
pomocu koje se moze proceniti tacnost kako dobro poznate Disingerove formule tako i Hajdinove i
ostalih. Na kraju, u radu su dati i korisni dijagrami.



