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Abstract. The paper is considering effects of the semi-rigid and eccentric joint 
connections of framework structures upon its dynamic properties and the time response 
due to an earthquake action. The corresponding numerical method representing the linear 
structural behaviour is developed. Semi-rigid connections at beam ends are presented by 
the rotational springs at beam's ends, with linear moment-rotation relationship. 
Eccentricity of joint connections is presented by the corresponding short infinitely rigid 
links at beam's ends. The effect of semi-rigid and eccentric connections is introduced in 
the numerical model by the corresponding corrective matrix. The corrective matrix is 
applied upon the conventional stiffness matrix of the beam element with usual rigid and 
centric connections. As important dynamic properties, the change of the natural circular 
frequencies and the natural modes, due to variation of joint rigidity and eccentricity of 
beam-to-column connections, is analyzed. In the time response structural analysis, 
considering displacements only, dynamic loading due to an earthquake defined by a given 
accelerogram is considered. The solution of the differential equations of motion is 
obtained by direct numerical step-by-step integration using the α method (Hilber-Hughes-
Taylor). In order to perform the numerical analysis, all considered numerical models and 
methods are implemented into the corresponding computer code, called ELAN, which is 
then used for the parametric analyses presented in the paper. 

Key words:  linear dynamic analysis, semi-rigid connections, eccentric connections. 

1. INTRODUCTION 

Conventional analysis and design of framed structures is usually done under the 
assumption that connections between beams and columns are either ideally rigid or ideally 
pinned. Large number of investigations of real connections show that majority of rigid 
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connections is not absolutely rigid, and also that majority of pinned connections is not 
ideal. Rigid connections, when loaded, allow some relative rotation at connections, and 
also pinned connections exhibit certain level of rotational stiffness of connections. 
Connections that in their behaviour under loads represent an intermission between ideally 
pinned and rigid connections are called semi-rigid or flexible connections. In the same 
way as the connections, especially in steel frames, are more or less flexible, they are also, 
more or less, eccentric. Usually, the joint eccentricity is disregarded; however, in some 
cases it is not justified. It is the case of joints with nodal plates, when the ratio between 
eccentricity and element length is not small. In steel trusses the ratio of eccentricity and 
the bar length may be up to 20%, while in framed systems that ratio is substantially 
smaller and is about 5%.   

Design of beam-to-column connection details must be carefully regarded, especially if 
the frames should also resist earthquake induced forces. In [1,4,5,7] it is shown that the 
flexibility of connections leads to the reduction of frame stiffness and to increase of 
periods of vibrations. Due to a change of dynamic properties of framed structures, when 
one takes into account also effects of connection rigidity and eccentricity, dynamic 
behavior of frames will be different than in the case of perfectly rigid connections. The 
paper is analyzing seismic performances of framed structures with semi-rigid and 
eccentric connections. Linear moment – joint rotation relationship is assumed. The effect 
of semi-rigid and eccentric connections is introduced by the corresponding corrective 
matrix which is modifying the conventional stiffness matrix that corresponds to rigid and 
centric joint connections. The effects of semi-rigid and eccentric connections upon 
dynamic properties and seismic response of framed systems are analyzed through 
examples of a planar frame and a non-symmetric spatial frame, using a self-developed 
computer code ELAN [3]. Besides other things, the code is capable of the eigenvalue 
analysis, frequencies and shapes, and the time response in dynamic seismic analysis with 
a given accelerogram as loading. 

The aim of the analysis is to consider the change of natural frequencies and natural 
modes, as well as the time response of framework structures, expressed through 
displacements, as a function of the flexibility and eccentricity of joint connections. As 
opposed to the present analysis, [8] is addressing the effects of semi-rigid and eccentric 
connections of framework structures in the modal and particularly spectral earthquake 
analysis. Besides applications in dynamic and earthquake analysis, the effects of semi-rigid 
connections are considered also in stability analysis, see [11], and in foundation design and 
soil-structure interaction based on the Winkler's model, see [12]. Prefabricated structures 
should also be treated as structures with semi-rigid connections, see, for example, [13]. 

2. MATHEMATICAL MODEL OF AA BEAM ELEMENT WITH SEMI-RIGID AND ECCENTRIC 

CONNECTIONS 

Due to the principle of superposition, the general case of the spatial state of stress of a 
beam, within the linear analysis, may be separated into the axial stresses, torsion and 
bending in the two orthogonal planes, thus representing the four independent problems. 
The corrective matrix, which takes care of the effect of semi-rigid and eccentric joints, 
has influence only upon the elements of the stiffness matrix that correspond to bending. 
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After obtaining the stiffness matrix of a beam with respect to bending, due to the principle 
of superposition, the combined stiffness matrix of a beam considering combined bending, 
torsion and axial forces is determined. 

Fig. 1 represents the clamped-clamped beam in a plane, with semi-rigid and eccentric 
joints, displaying the adopted generalized displacements.  

The behavior of a semi-rigid connection, defined by the bending moment M and 
rotation , is assumed as linear. Semi-rigid connection at beam's ends is represented by 
the rotational springs at ends, while the eccentric connection is modeled by infinitely rigid 
elements. Formulation of the finite element is derived in such a way to be able to separate 
effects of semi-rigid and eccentric connections.  

 
 

Fig. 1. Planar beam with semi-rigid and 
eccentric connections 

Fig. 2. Angles of rotation of a deformed 
beam element 

2.1 Effect of semi-rigid connections upon bending of a planar beam 

Linear semi-rigid connection is considered. The relation between the lateral 
displacement of a beam axis and the vector of the generalized displacements q  at beam's 

ends may be presented by the interpolation functions as 

( ) ( )v x x N q ;     1 2 3 4( ) ( ) ( ) ( ) ( )x N x N x N x N xN ; 

 1 1 2 2
T v v q  

(1) 

Rotations of joints i are equal to the sum of beam rotation i and the additional 

rotation θi of beam's end, as a consequence of the semi-rigid connection, see Fig. 2: 

i i i     ,  1, 2i   (2) 

Eq. (1), taking care about Eq. (2), may be written as 
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 1 1 2 2
T v v  q ;        1 20 0T   θ  

Vector θ, in Eq. (3),  may be expressed as 

1 2

1 2

0 0T M M

k k

 
  
 

θ ;      i
i

i

M

k
  , 1, 2i   

(4) 

where ki represents the rotational stiffness of the spring, while iM  is the moment at joint 

i of the beam. The relation between forces and displacements at beam's ends is given by 
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(5) 

where 0K is the bending stiffness matrix of clamped-clamped beam, E is the Young's 

modulus of elasticity and I is the moment of inertia of the cross section. Moments at 
beam's ends in Eq. (5) may be expressed as a function of the vector q . From Eq. (5), 

taking care about Eqs. (3) and (4), one obtains the moments at beam's ends as 
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where  g  is the non-dimensional rotational spring stiffness. Vector of rotation θ, given by 
Eq. (4) and taking care about Eq. (6), may be written in the form 
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(7) 

where G is the corrective matrix of the clamped-clamped beam with semi-rigid 
connections at both ends. Since the rotation vector θ is determined by Eq.(7), it may be 
eliminated from Eq.(3), so the lateral displacement of an arbitrary point along the beam 
element is given by 

( ) ( )( )v x x N I G q  (8) 

In the case of semi-rigid connections one has 1 1v v  i 2 2v v , and also vector q q , so the 

vector of interpolation functions for a beam with semi-rigid and centric connections is given as  
( ) ( )( )x x N N I G  (9) 
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2.2 Effect of eccentric connections upon bending of a planar beam 

Let the vector q  denote the vector of generalized displacements in joints of the beam 

element, i.e. 

 1 1 2 2
T v v  q  (10) 

Eccentricity of joint connections is represented by the short ideally rigid links of the 
finite lengths denoted as e1 and e2 (see Fig.1). For small rotations, connection between 
displacements of beam ends and displacements of joints, may be written in the form 
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(11) 

Matrix E in Eq. (11) is the corrective matrix defining the rigid eccentric connection. The 
lateral displacement of an arbitrary point along the axis of the beam element with 
eccentric connections, inserting in Eq. (3) that θ 0  and taking into account Eq. (11), is 
given by 

( ) ( ) ( )( ( )v x x x x   N q N I E)q N q  (12) 

where ( )xN  is the vector of interpolation functions for eccentric joints.  

2.3 Effect of semi-rigid and eccentric connections upon bending of a planar beam 

Substituting expression (11) into Eq. (8), deformed axis of a beam element with semi-
rigid and eccentric connections may be expressed as 

 1
ˆ(x) ( ) ( )v x x  N I G q N q ;        1G ( G E GE)  (13) 

2.4 Bending stiffness matrix of a planar beam 

Bending stiffness matrix of a beam element with semi-rigid and eccentric 
connections may be derived through deformational work of a beam given by 
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(14) 

The first term in Eq. (14) represents the potential energy of elastic deformation of a beam, 
while the second and the third terms represent the potential energy of rotational springs at 
the semi-rigid connections at beam ends. Eq. (14), considering expressions (7), (11) and 
(13), might be expressed in the matrix form as 
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(15) 

In Eq. (15) K represents the bending stiffness matrix of a beam with eccentric and semi-

rigid connections. Expression for K in Eq. (15), having in mind the expression for ˆ ( )xN  

in Eq. (13), may be written as 

0
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0

" "
l

T
EI dx K N N  

 
(16) 

where 0K  is the stiffness matrix of a beam element with rigid centric connections. 

3. DIFFERENTIAL EQUATIONS OF MOTION IN THE CASE OF SEISMIC LOADING 

It is assumed that the seismic loading is defined by the vector of generalized dynamic 
support displacement a(t) which may have an arbitrary direction in space (Fig. 3). If a 
joint of the system has six generalized displacements, the vector of generalized dynamic 
support displacement, expressed in an arbitrary orthogonal system 123, is given as 

 1 2 3( ) 0 0 0T t a a aa  (17) 

The motion of the structure due to seismic excitation is considered as the compound 
motion. The absolute displacement vector ,j absq  of each mass  j (j=1,2,...,N), consists of 

the vector of imposed displacement qj,k(t)  which is equal to the seismic soil displacement 
at the base of the building, and the vector of relative displacement qj(t) (Fig. 4),  so, it is 

, ,j abs j k j q q q  (18) 

Let the axis 1 of the coordinate system 123, which is used as the reference frame for 
support displacement, forms the angle  with the global X axis, and the axis 3 is in 
direction of the vertical Z axis (Fig. 3). The vector of imposed displacements of joint j 
with respect to the axes of the global coordinate system may be given as 
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(19) 

Vector of the total (absolute) displacements of the system is given as 
( ) ( ) ( )abs t t t q Ba q ;                                
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1, , ,
T T T T
abs abs j abs N abs   q q q q   

1
T T T T

j N   B B B B  ;   1 T T T T
j N   q q q q   

(20) 

In the case of a seismic loading, the inertial forces depend upon the absolute 
acceleration, viscous dissipative forces upon the relative velocity and the restitution 
forces upon the relative displacement, while the external dynamic nodal forces are equal 
to zero. Dynamic equilibrium equations, i.e. differential equations of motion, due to the 
seismic loading, are given, in the matrix form, as 

abs   Mq Cq Kq 0   (21) 

where: M is the mass matrix, C the matrix of viscous damping and K the stiffness matrix. 
Eq.(21), considering expression (20), becomes 

   Mq Cq Kq MBa    (22) 

Damping matrix C is assumed as the linear combination of the mass and stiffness 
matrices:  

 α β C M K ;  1

1

2 n

n

  
 

 
;  

1

2

n


 

 
 

 
(23) 

The coefficients  and  in Eq. (23) are usually determined in such a way that for the two 
natural frequencies 1 and n , corresponding to two different natural modes, an equal 
relative damping is adopted: 1 n     . 

The solution of differential equations of motion (22), due to an earthquake excitation, is 
obtained by direct numerical integration using the  method by Hilber-Hughes-Taylor, as 
described in [2], or [8]. It is the implicit and unconditionally stable numerical integration 
method, based upon the idea of the Newmark β method. Applying the  method to Eq. (22), 
one obtains the equivalent static problem, i.e. it reduces to the system of linear algebraic 
equations within each time interval. Obtained values of displacements at the end of the 
considered time interval enable also calculation of generalized velocities and accelerations at 
the end of considered time interval Δt. Calculated values at the end of considered time interval 
are now the known initial values at the beginning of the next time interval, so, by successive 
time stepping, interval by interval, the total time response is obtained for considered structure. 

 

Fig. 3. Decomposition of the vector of dynamic support displacement a 
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Fig. 4. Displacement of a structure due to an earthquake 

 
In order to determine dynamic properties of the structure, i.e. to obtain the natural 

frequencies and modes, the corresponding differential equations of free undamped 
vibrations is considered: 

 Mq Kq 0  (24) 

The solution of equations (24) is assumed in the form of synchronous and in-phase 
vibrations, i.e. in the form when all generalized coordinates have the same time 
dependence (harmonic vibrations). General configuration of motion is the same, only the 
amplitudes are changing. The solution, of course, is given by the complete or by partial 
solution of the generalized eigenvalue problem, i.e. by determination of the corresponding 
eigenvalues and eigenvectors, for instance, according to procedures given in [6]. The 
eigenvalue problem of a pair of real, symmetric and positive definite matrices K and M is 
first transformed to the standard eigenvalue problem of one matrix. Then, applying the 
Householder's transformation,  obtained matrix is transformed into tridiagonal matrix 
which is then decomposed by the QL method to obtain the eigenvalues and eigenvectors. 

4. NUMERICAL EXAMPLES 

Parametric analysis was done using the self-developed computer code ELAN [3], 
which enables the linear and non-linear analysis of framed structures due to various static 
and dynamic loadings. 

Analysis is performed considering two examples. As the first example, ten story planar 
frame, given in Fig. 5, is considered (referred to as planar frame). The second example is the 
ten-story non-symmetric framework building with three parts, or towers, of unequal height, 
as given in Fig. 6 (referred to as the spatial frame). The main tower of the spatial frame is 10 
stories high, while the other two have 4 and 6 stories. In both frames, bay distance is 8m, 
while the story height is 4m. Cross sectional properties are, for beams: area F=0.306m2, 
moment of inertia I = 0.002569m4 and columns: area F=0.1224m2, moment of inertia for 
both local axes I = 0.001798m4. Modulus of elasticity is 8 22.1 10E x kNm . Semi-rigid and 
eccentric connections are at joints between columns and beams. 

For the planar frame, masses mX = 20 kN sec2 m1
 are concentrated at joints of the 

frame, at connections of beams and columns, and are oscillating only in direction of the 
global X axis. 
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Table 1. Floor masses of the spatial frame 
Floor 2 1secXm kN m    2 1secYm kN m    2secZm kNm     

1- 4 120 120 7263 
5- 6 80 80 2133 
7-10 40 40 426 

For the spatial frame, floor slabs are rigid concrete plates. Rotations of joints of the 
steel structure are not suppressed. Numerical model of a building was assumed as the 
pseudo tridimensional model with rigid floors, as described in [3]. The mass of the 
structure is concentrated in the centers of mass of each slab and is given in the Table 1 
(slabs are numerated from the bottom upwards).  

The spatial frame example represents the case of the rigid floor building which is non-
symmetric both in plan and over the height. Dynamic treatment of such buildings is given, 
for example, in [10], or [8], while very interesting seismic analysis of non-linear in-plane 
asymmetric buildings is given in [9]. 

4.1. The natural frequencies and the natural modes 

When analyzing dynamic properties (natural circular frequencies) due to change of 
flexibility and eccentricity of joints, in order to avoid the real numerical values, the 
corresponding non-dimensional values are introduced: coefficient of joint rigidity, 
coefficient of joint eccentricity and normalized considered effect, i.e. normalized natural 
frequency. Two types of diagrams are defined, according to [5]:  
 Diagram: Coefficient of rigidity (Kk) - Normalized frequency due to the change of 

coefficient of rigidity (Nk,u). Natural frequencies are given as functions of the 
coefficient of joint rigidity kK , which is defined as  

1
3

1
kK

EI
lk




;   ,
1

Kk
k ut

Kk

u
N

u 

  
(25) 

where k is the joint rigidity. Normalized frequencies Nk,ut , given by Eq. (25), are obtained 
by division of obtained frequencies for the frame with semi-rigid connections by the 
corresponding frequencies for the frame with rigid joints. So, uKk  is the considered 
property (with notation ut=ω for natural circular frequencies) for the coefficient of joint 
rigidity Kk, while uKk=1  is the same frequency for Kk =1.  
 Diagram: Coefficient of eccentricity (Ke) – Normalized frequency due to the 

change of coefficient of eccentricity (Ne,u). Natural frequencies are given se 
functions of the coefficient of joint eccentricity eK , which is defined as 

k
e

l
K

l
 ;  ,

0

Ke
e ut

Ke

u
N

u 

  
(26) 

where lk  is the length of the rigid zone in the joint, while l  is the length of the beam 
element. The natural frequencies are normalized here by division of obtained frequencies 
by the corresponding frequencies for the structure without eccentricity. In Eq. (26), for  
the normalized frequencies, uKe is the considered frequency for the coefficient of 
eccentricity Ke, while 0Keu   is the same frequency without eccentricity, i.e. for Ke=0. 
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 Fig. 5. Planar frame  node Fig. 6. Spatial frame 

Diagrams given in Fig. 7 represent the effect of the change of coefficient of joint 
rigidity upon the value of the first five circular natural frequencies. The lowest normalized 
circular frequency is denoted as 1.  

For the planar frame the change of joint rigidity has greater effect upon lower than 
upon higher normalized natural circular frequencies, as may be seen at diagram given in 
Fig. 7a. 

With the lower values of the coefficient of rigidity, the values of normalized circular 
frequencies are decreasing approximately in linear fashion. The greatest decrease of the 
normalized natural frequencies is for Kk=0.1, when the value of the first frequency is 
decreased for 67%, while the value of the fifth frequency for 34%. 

For the spatial frame the change of the coefficient of joint rigidity has approximately 
the same effect upon the first five normalized circular frequencies, as may be seen from 
diagram in Fig. 7b. With the lower values of the coefficient of rigidity, the values of the 
first five normalized natural frequencies are decreasing approximately the same and in the 
linear fashion. The greatest decrease of the normalized natural frequencies is for Kk=0.1 
when the value of the first frequency is decreased for 67%, while the value of the fifth 
frequency for 61%. 
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a) 

 

b) 

 
Fig. 7. Effect of the joint rigidity upon the first five normalized natural 

frequencies:  a) planar frame  b) spatial frame 

Diagrams given in Fig. 8 represent the effect of the change of coefficient of joint 
eccentricity upon the first normalized natural frequency, for the planar and the spatial frame, 
and for coefficients of joint rigidity given as 0.1, 0.5 and 1.0. It may be seen that the value of 
the first normalized circular frequency is linearly increasing with the increase of the coefficient 
of eccentricity. That is the consequence of the fact that larger coefficient of eccentricity reduces 
more the length of beams, which results in the stiffer structure in the overall sense. It may also 
be seen that for the same value of the coefficient of eccentricity and for different values of the 
coefficient of joint rigidity, the values of the lowest normalized circular frequencies are very 
close to each other. It means that the change of the lowest natural frequency, due to the change 
of the coefficient of eccentricity, is practically independent of the coefficient of joint rigidity. 
The largest value of the first normalized circular frequency is for the coefficient of eccentricity 
of Ke=0.1, and is the same for all values of the coefficients of rigidity. The increase of the first 
normalized circular frequency for all values of the coefficient of rigidity is approximately 20% 
with respect to values for Ke=0. 

 

a) 

 

b) 

 
Fig. 8. Effect of joint eccentricity upon the lowest normalized frequency and 

different joint rigidities for a) the planar frame b) the spatial frame 

Diagrams given in Fig. 9 represent the effect of the coefficient of joint rigidity upon 
the first six natural modes, as obtained for the planar frame and for the values of 
coefficients of joint rigidity given by 0.1, 0.5 i 1.0. In Fig. 9a, corresponding to the first 
natural mode, it may be seen that the effect of joint rigidity depends upon the floor. 
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Namely, the amplitude of the modal shape at higher floors is increasing with decrease of 
the coefficient of rigidity, while at the lower floors it is the opposite: the amplitudes are 
decreasing.  The change of the coefficient of rigidity also influences the higher natural 
modes, differently for various floors, as may be observed in Figs. 9b-g. For instance, for 
the second natural mode (Fig. 9b), with decrease of the coefficient of joint rigidity, at 
higher floors the amplitudes of modal vectors are increasing, and going to the lower floors 
decreasing, and then also increasing.  

 
a) I mode 

 
b) II mode 

 
d) III mode 

 
e) IV mode 

 
f) V mode 

 
g) VI mode 

 
Fig. 9. Effect of the coefficient of rigidity upon the natural shapes for the planar frame 

4.2. The time response due to a given accelerogram 

The time response of considered structures due to an earthquake is obtained for the repre-
sentative accelerogram as presented in  Fig. 10. Given accelerogram is acting along the axis 1, 
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which is covering the angle  = 0o with the global X axis. The time response of the structures is 
determined for the whole duration of the earthquake of 10 seconds, with adopted time step of 
Δt=0.02s. The coefficient of viscous damping is adopted as  = 0.05. Diagrams given in Fig. 11 
represent the time response of considered structures due to given accelerograms for three values 
of the coefficients of joint rigidity: Kk=0.1, 0.5 and 1.0. For the planar frame, as the 
representative time response, the generalized displacement U1 of the node 1 in direction of the 
global X axis is considered.  As for the spatial frame, considered time response is the 
generalized displacement U10 of the center of mass of the top floor number 10, in direction of 
the global axis X. 

 
Fig. 10. Accelerogram of considered earthquake 

 

 
a) 

 
b) 

 

Fig. 11. Time history of the generalized displacements for different joint rigidity 
coefficient: a) the planar frame, b) the spatial frame 

From the time response in Fig. 11 it may be seen that with decrease of the coefficient 
of rigidity, displacements are increasing. Increase of displacements might be substantial. 
The maximum displacements, for different values of the coefficient of rigidity, for the 
plane frame, are obtained as: Kk=0.1 – maxU1 = 0.175m, Kk=0.5 – maxU1 = 0.068m and 
Kk=1.0 – maxU1 = 0.044m. The maximum displacement for Kk=0.1 is approximately 4 
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times larger than for Kk=1.0. The maximum displacements for different values of the 
coefficient of rigidity, for the spatial frame, are obtained as: Kk=0.1 – maxU10 = 0.186m, 
Kk=0.5 – maxU10 = 0.05m and Kk=1.0 – maxU10 = 0.038m. The maximum displacement 
for Kk=0.1 is approximately 4.9 times larger than for Kk=1.0.   

5. CONCLUSION 

The paper is considering effects of the semi-rigid and eccentric joint connections upon 
the dynamic properties and the time response of framework systems. The corresponding 
numerical model describing the linear dynamic behaviour of considered structures is de-
veloped. Influence of the semi-rigid and eccentric joint connections is introduced through 
the corresponding corrective stiffness matrices. The corrective matrices are applied onto 
the conventional stiffness matrix of the beam element with rigid and centric connections.  

As the corresponding numerical illustration, two numerical examples are considered: ten-
storey plane frame with one bay, and a non-symmetric framed building with three towers of 
different height: ten, six and four stories. Non-symmetric spatial building is treated 
according to the rigid floor assumption as the pseudo-tridimensional numerical model.  

Numerical results clearly demonstrate the effects of the semi-rigid and eccentric con-
nections upon:  
 The natural circular frequencies – for considered planar frame the change of the 

coefficient of rigidity has greater effects upon the lower than upon the higher nor-
malized circular frequencies. With decrease of the coefficient of rigidity, the val-
ues of the normalized circular frequencies decrease approximately linearly. For the 
considered spatial non-symmetric frame the change of the coefficient of rigidity 
has approximately the same effect upon the first five natural frequencies. Namely, 
with decrease of the coefficient of rigidity, the values of the first five natural fre-
quencies are decreasing approximately the same and linearly. For both frames the 
value of the lowest normalized frequency is increasing linearly with increase of the 
coefficient of eccentricity, which is the consequence of the fact that the larger co-
efficient of joint eccentricity reduces the lengths of the beams, which means that 
the whole structure becomes stiffer. Also, the change of the first normalized natu-
ral frequency, due to the change of the coefficient of eccentricity, is almost inde-
pendent of the coefficient of joint rigidity; 

 The natural modes – for the planar frame the change of the coefficient of rigidity 
influences the natural modes, differently for different stories. Depending on the 
considered natural mode, modal amplitudes of different stories might increase or 
decrease with reference to the change of the coefficient of rigidity;  

 The time response to seismic loading defined by the given accelerogram – for both consid-
ered frames, for the planar and the non-symmetric spatial one, with decrease of the coeffi-
cient of rigidity the maximum values of displacements might be substantially increased. 

 Numerical model is implemented in developed computer code ELAN, which could 
be used for the linear dynamic analysis of framed structures. The code is used for 
the parametric analysis presented in the paper. 
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DINAMIČKE OSOBINE I VREMENSKI ODGOVOR OKVIRNIH 
NOSAČA SA POLUKRUTIM EKSCENTRIČNIM VEZAMA 

Špiro Gopčević, Stanko Brčić, Ljiljana Žugić 

U radu je razmatran uticaj polukrutih i ekscentričnih veza na: dinamičke osobine i vremenski 
odgovor okvirnih nosača. Razvijen je numerički model koji opisuje linearno ponašanje konstrukcije. 
Polukruta veza  krajeva štapa modelirana je pomoću rotacionih opruga, na krajevima štapa, koje 
imaju linearnu vezu moment-rotacija. Ekscentričnost veze predstavljena je kratkim beskonačno krutim 
elementima na krajevima štapa. Uticaj polukrute i ekscentrične veze u proračun je uveden preko 
korektivne matrice. Primenom korektivne matrice modifikovana je konvencionalna matrica krutosti 
elementa sa krutim i centričnim vezama. Od značajnih dinamičkih osobina konstrukcije analizirana je 
promena kružnih frekvencija i svojstvenih oblika slobodnih harmonijskih oscilacija u zavisnosti od 
promene krutosti i ekscetričnosti veza između greda i stubova. Kao dinamičko opterećenje, za analizu 
vremenskog odgovora konstrukcije datog preko pomeranja, razmatrano je zemljotresno opterećenje 
konstrukcije dato preko akcelelograma. Za rešavanje diferencijalnih jednačina kretanja korišćen je 
metod direktne numeričke integracije korak-po-korak, korišćenjem  postupka (Hilber–Hughes–
Taylor). U cilju numeričke realizacije ovoga problema, prikazani numerički modeli i metode su 
ugrađeni u razvijeni kompjuterski program, nazvan ELAN, pomoću koga su sprovedene parametarske 
analize koje su prikazane u radu.  

 
Ključne reči: linearna dinamička analiza,  polukrute veze, ekscentrične veze. 


