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Abstract. The influence of longitudinal constructive discontinuity on the stability of the 
plate in the domain of elastic stability is solved based on the classical thin plate theory. 
The constructive discontinuities divide the plate into fields of different thickness. The 
plate has two opposite edges simply supported while the other two edges can take any 
combination of free, simply supported and clamped conditions. The Levy method is 
used for the solution of the problem of stability, with the aim of developing an 
analytical approach when researching the stability of plates with longitudinal 
constructive discontinuities and also with the aim of obtaining exact solutions for 
plates with non-uniform thickness. The exact solutions for stability presented herein 
are very valuable as they may serve as benchmark results for researches in this area. 
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1. INTRODUCTION 

Plates with constructive discontinuity and fields of non-uniform thickness are exten-
sively used in modern structures. By using such plates, it is possible to obtain material 
saving, weight reduction, stiffness enhancing, designated strengthening, fundamental vi-
bration frequency increasing, etc. A theoretical analysis of the stability of plates with 
fields of non-uniform thickness is employed in practical engineering designs. Researchers 
have investigated various forms of thickness variations of the plate that include: a linear 
function along one direction [1]; a non-linear function along one direction [2] or in both 
directions [3]. Piecewise constant step functions in one direction are considered in refer-
ences [4, 5], and in both directions in references [6].  

Exact buckling solutions of rectangular plates based on boundary conditions are given 
in this paper. By using the Levy method, an analytical method for obtaining the solutions 
is presented. Plates with variable thickness in one direction parallel to the plate edges 
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while the thickness is constant in the other direction are considered. The obtained results 
for the stability of the plate are shown graphically as well as in a tabular form.  

The paper is organized in the following manner. Theoretical formulations are pre-
sented in Section 2. The Levy method is used to develop the analytical analysis for rec-
tangular plates with constructive discontinuities and fields of non-uniform thickness. Two 
edges of the plate are simply supported and the other two edges can take any combination 
of free, simply supported and clamped conditions. In Section 3, the exact solutions for the 
stability of the rectangular plate when two edges are simply supported and the other two 
are clamped are presented. The results and discussions are presented in Section 4. This 
paper ends with a conclusion. 

2. PROBLEM FORMULATION  

Figure 1 shows the model of a rectangular plate with i  1 (i = 1,2,...,n) longitudinal 
constructive discontinuities which divide the plate into i  fields of different thickness hi. 
The fields of the plate have a common elastic surface area. The plate is simply supported 
along two opposite edges that are parallel to the Y-axis, i.e., edges AC and BD. The other 
two edges CD and AB may be both free or simply supported or clamped. The plate has a 
constant thickness in the X direction. The origin of the co-ordinate system (X, Y) is set at 
point C as shown in Figure 1. Assume that a rectangular plate is compressed in its middle 
plane by forces uniformly distributed along the sides X = 0 and X = a. The plate is 
isotropic, elastic with modulus of elasticity E and  Poisson's ratio . The problem at hand 
is to determine the critical buckling loads for n  rectangular plate fields. 

 

Fig. 1 

Based on the classical thin plate theory, the governing differential equation for the i th 
field is given by [7,8] 



 Stability Plate with Longitudinal Constructive Discontinuity 25 

 
4 4 4 2

4 2 2 4 2
2i i i i

i x

w w w w
D N

X X Y Y X

é ù¶ ¶ ¶ ¶ê ú+ + =-ê ú¶ ¶ ¶ ¶ ¶ë û
, 1,2i n   (1) 

in which the subscript i refers to the i th field of plate, wi(X,Y) is the transverse displacement, X 
and Y are the Cartesian co-ordinates, ))1(12/( 23  ii EhD is the flexural rigidity of the 

field, NX is the in-plane compressive load. 
Using the following transformations: 

 X ax= ,   0 1x£ £ , (2) 

 Y by= ,   0 1y£ £ , (3) 

 
a

b
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differential equation (1) of the deflection surface can be written in the following form 
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where Ki is the buckling factor for i th field of the plates and which, for certain materials 
and load, depends on the dimensions of the plate. 

The boundary conditions for the two simply supported edges at x=0 and x=1 are [8] 

  
0

, 0i x
w x y


 ,               

1
, 0i x

w x y

  (6) 

  
0

0x i x
M


 ,               

1
0x i x

M

  (7) 

where (Mx)i  is the bending moment defined by  
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The boundary conditions for the other two edges at 0y =  and 1y=  are given by 
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The subscript i takes the value of either 1 or n, (My)i  is the bending moment and (Qy)i   
the transverse force. 

By using the Levy approach, the transverse displacement function for the ith field of 
the plate can be expressed as 

 1 1( , ) ( )sin mw x y f y xa= ,     m ma p= .  (13) 

where m  is the number of sinusoidal half-waves of the buckling in the x direction and 
fi(y) is an unknown function to be determined. Eq. (13) satisfies the boundary conditions 
[eqs. (6) and (7)] for the two simply supported edges at 0x=  and 1x= . 

In view of Eq. (13), the partial differential equations in Eq. (5) may be reduced to 
fourth-order ordinary differential equations as 
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Depending on the roots of the characteristics equations of the differential equations, 
there are particular solutions to the above fourth-order differential equations. 

The longitudinal constructive discontinuity is at arbitrary distance  from the edge of 
the plate y = 0, (0    1). 

Along the longitudinal constructive discontinuity between the i th and the (i + 1) th field 
of the plate, the following continuity conditions must be satisfied: 

 1i iw w+= , 1ii ww

y y
+¶¶

=
¶ ¶

, (My)i = (My)i+1, (Qy)i = (Qy)i+1 (15) 

where wi and wi+1, wi / y and wi+1 / y, (My)i and (My)i+1, (Qy)i and (Qy)i+1 are the 
deflections, slopes, bending moments and effective shear forse (transversal forse) for the 
i th and (i + 1) th field of plate, respectively.  

3. PLATE WITH ONE DISCONTINUITY AND TWO CLAMPED EDGES 

A plate with one longitudinal constructive discontinuity and clamped edges y = 0 and 
y = 1 is considered. The discontinuity is at the arbitrary distance (01) and it divides 
the plate into field 1 (i = 1) and field 2  (i = 2).  

 

Fig. 2 
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The flexural rigidities of field 1 and field 2, and their ratio are: 
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The buckling factors are given by the following expressions  
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2
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Based on expression (2) of the differential equation of the elastic surface of field 1 and 
field 2, the plates get the following form 
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The solutions of the partial differential equations eqs. (18) and (19) for field 1 and 
field 2 of the plate in accordance with eq. (13) have the form 

 1 1( , ) ( )sin mw x y f y xa= ,   m ma p= . (20) 

 xyfyxw m sin)(),( 22 ,   m ma p=  (21) 

where f1(y) and f2(y) are unknown functions to be determined. 
Solutions (20) and (21) satisfy the boundary conditions (eqs. (6) and (7)) for the two 

simply supported edges at 0x=  and 1x= . 
In view of eqs. (20) and (21), the partial differential equations in eqs. (18) and (19) 

may be reduced to fourth-order type ordinary differential equations as 
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The buckling of field 1 and field 2 of the plate in the direction of the y axis is 
determined by the functions f1(y) i f2(y) which are represented in the form 

 1 1( ) yf y A el= ,   2 2( ) yf y A el¢= . (24) 

Based on (24) eqs. (22) and (23), the characteristics equation for field 1 is derived 
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And the characteristics equation for field 2 
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The general solution of the differential equation (22) has the form 

 f1(y) 1 1 2 1 3 1 4 1cosh sinh cos sinC y C y C y C ya a b b= + + + , (27) 

where 1 and 1 are the roots of the characteristics equation (25) for the condition 
2 2 2/mKp a q>  
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The general solution of the differential equation (23) has the form 

 f2(y) 5 2 6 2 7 2 8 2cosh sinh cos sinC y C y C y C ya a b b= + + +   (30) 

where 2 and 2 are the roots of the characteristics equation (26) for the condition 
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The constants of integration Cj, j = 1,2,...8 in solutions (27) and (30) are determined 
from the boundary conditions along the edges y = 0 and y = 1 and the continuity 
conditions along the constructive discontinuity. 

The boundary conditions on the edges y = 0 and y = 1 are 
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In order to ensure the displacement continuities and equilibrium conditions at the 
discontinuity the following essential and natural conditions (15) must be satisfied 
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From the conditions (33)-(37), a system of homogenous linear algebraic equations in 
unknown constants of integration is obtained. The buckled form of the equilibrium of the plate 
becomes possible only if the determinant of this system of equations vanishes. The determinant 
of the system of equations contains parameters which influence the stability of the plate. 

4. NUMERICAL RESULTS AND DISCUSSION 

The stability criterion is presented in the tables and graphically. Stability region is 
bellow boundary curves. 

Figure 3 shows, for the first half-wave and  = 0.3, the dependence of the buckling 
factor K on the plate aspect ratio a/b and the ratio h2/h1 of the thickness of the fields of the 
plate. At the beginning, the values of K decrease with the increase of the ratio a/b, 
reaching the minimum value and starting from that value, K increases with the increase of 
the ratio a/b. With the increase of the ratio h2/h1, the values of K increase and the 
minimum values move toward a slightly higher plate aspect ratios a/b.  

 
Fig. 3. The buckling factor K in the function of the plate aspect ratio a/b for different a ratio h2/h1 

 

Fig. 4. The buckling factor K in the function of the plate aspect ratio a/b  
for the different position of the  of the constructive discontinuity 
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Figure 4 shows, for the first half-wave and the constant ratio h2/h1, the dependence of 
the buckling factor K on the plate aspect ratio a/b of the edges of the plate for different 
positions of the discontinuity. At the constant ratio h2/h1 the value of K decreases with the 
increase of  because with the increase of  the width of field 1, which has smaller 
thickness (h1 < h2), increases and the width of field 2, which has greater thickness, decreases. 
With the decrease of  the minimum values of K move toward a higher ratio a/b. 

For the constant position of the discontinuity ( = 0.5), the values of K increase with 
the increase of the ratio h2/h1 (Figure 5). 

 

Fig. 5. The buckling factor K as the function of the plate aspect ratio a/b  
for the different ratio h2/h1 and with more half-waves 

 

Fig. 6. The buckling factor K as the function of the plate aspect ratio a/b   
for the different position of  with more half-waves 
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Figure 6 shows the influence of  on the buckling of the plate in more half-waves. For 
the constant ratio h2/h1 and at a given ratio a/b, the factor K decreases with the increase of 
. With the increase of the ratio a/b > 5, the values of K approach the minimum values of 
each individual graph.  

For the rectangular plate and the first half-wave (Figure 7), the characteristic point is  
h2/h1 = 1 (when  there is no discontinuity). With the moving of the position of the 
discontinuity toward higher values, the value of the buckling factor K decreases because 
the width of filed 1 is increased. The buckling factor K = 8.6045 is for a plate of constant 
thickness. For the case of h2/h1 < 1, the value of K increases as  increases because the 
width of filed 1 increases, which in the given case has greater thickness (h1 > h2). For a 
given ratio h2/h1 and the case when h2/h1 > 1, the value of K decreases because the width of 
filed 1 with smaller thickness (h1 < h2) increases.  

 

Fig. 7. The buckling factor K in the function of the ratio h2/h1   
for the different position of  of the constructive discontinuity 

 

Fig. 8. The buckling factor K in the function of position   
of the constructive discontinuity for the different ratio h2/h1  
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Figure 8 shows the dependence of the factor K on the position of the discontinuity for 
different ratios h2/h1  (m = 1, a/b =1). With the increase of , the value of K decreases for 
the ratio h2/h1 > 1 and increases for  h2/h1 < 1. 

Table 3.4.3.1. Value of the buckling factor K  

a/b h2/h1    

0.6 
1.2 
1.5 
2.0 

10.7261 
17.4265 
31.0241 

  9.1515 
12.3331 
18.3271 

  7.9877 
    9.38079 

11.5142 

1   

1.0 
1.2 
1.5 
2.0 

  8.6045 
11.8010 
19.2690 
34.0100 

  8.6045 
  9.9392 
13.2060 
18.8220 

  8.6045 
  8.5789 
  9.8104 
11.5260 

2   
1.2 
1.5 
2.0 

10.5388 
17.0325 
30.0290 

9.0487 
12.2272 
18.3906 

  7.9581 
  9.4800 
11.9155 

 
The values of the bucling factor K given in the Table are the same as the values obtained 

in references [5, 9]. 

5. CONCLUSION 

The stability of a rectangular plate with longitudinal constructive discontinuities has 
been discussed in the field of elastic stability. Constructive discontinuities divide the plate 
into fields which are isotropic, vary in thickness and have a common elastic surface area. 
In its middle plane, the plate is compressed with uniformly distributed forces along two 
opposing plate edges. The Morris-Levy method has been used to solve the stability prob-
lem. Basic theoretical postulates, which are later applied to a particular case, are given. 
The case when two opposing edges, which are loaded or simply supported, and the other 
two edges are clamped has been considered. By applying the Levy method of the bound-
ary conditions and the conditions along the constructive discontinuity, a system of equa-
tions has been derived. The determinant of the derived system of equations contains pa-
rameters which influence the stability of the plate. Based on the obtained solution, nu-
merical analysis has been performed. Stability criteria (the buckling factor) in the function 
of plate's edges length ratio, plate thickness ratio, the flexural rigidity and the position of 
the constructive discontinuity are obtained. The minimum values of the critical loads and 
the boundary curves, below which a stable area is found, are derived. The results pre-
sented in this paper provide valuable benchmark solutions for researchers who are devel-
oping numerical techniques for buckling analysis of non-uniform thickness plates.  
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STABILNOST PLOČE SA PODUŽNIM KONSTRUKTIVNIM 
DISKONTINUITETOM 

Snežana Mitić, Ratko Pavlović 

Na osnovu klasične teorije tankih ploča rešavan je uticaj podužnog konstruktivnog diskontinuiteta na 
stabilnost ploča u oblasti elastične stabilnosti. Konstruktivni diskontinuiteti dele ploču na polja koja 
imaju različite debljine. Ploča se sastoji od dve naspramne ivice koje su slobodno oslonjene dok preostale 
dve ivice mogu biti slobodne, slobodno oslonjene ili uklještene. Za rešenje problema stabilnosti korišćena 
je Levy-jeva metoda u cilju razvijanja analitičkog pristupa pri proučavanju stabilnosti ploča sa podužnim 
konstruktivnim diskontinuitetima, odnosno dobijanja tačnih rešenja za ploče sa promenljivom debljinom. 
Tačna rešenja za stabilnost koja su ovde predstavljena od velikog su značaja jer mogu poslužiti kao 
referentni rezultati istraživačima u datoj oblasti. 

Key words:  Levy-jev metoda, faktor izvijanja, kriterijum stabilnosti, konstruktivni diskontinuitet.




