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Abstract. In this work we will consider a simply supported square plate of side L that is 
subjected to a load q per unit area. The deflection w in the z-direction is the solution of 
the Poisson differential equation. For simplicity, we suppose that the loading is uniform 
so that q is constant. The program is written for computing the deflections w at a set of 
points with n intervals along each side of the square plate. In this case, we employ a 
program that uses the Gauss-Seidel method to approximate the solution of Poisson's 
equation. The program is written for kmax applications through all interior grid points. 
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Gauss-Seidel method, grid 

1. INTRODUCTION 

At this time practically all finite element programs use some form of Gauss elimination to 
solve the equilibrium equations KU = R. However, it is interesting to note that during the initial 
developments of the finite element method, iterative solution algorithms have been employed 
extensively, and much research has been spent on improving various iterative solution schemes. 
A basic disadvantage of an iterative solution is that the time of solution can be estimated very 
approximately, because the number of iterations required for convergence depends on the 
condition number of the matrix K and whether effective acceleration factors are used.  

The objective in this section of KU = R, it is necessary to use an initial estimate for the 
displacements U, say U (1), which is no better value is known, may be a null vector. In the 
Gauss-Seidel iteration we than evaluate for s = 1,2,…: 
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where Ui  
(s) and Rt are the ith component of U and R, and s indicates the cycle of iteration. 

Alternatively, we may write in matrix form, 
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where KD is a diagonal matrix, KD = diag(kii), and KL is a lower triangular matrix with the 
elements kij such that: 
 K=KD+KL+KL

T (3) 

The iteration is continued until the change in the current estimate of the displacement 
vector is small enough, i.e., until 
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where ε is the convergence tolerance. The number of iterations depends on the "quality" of 
starting vector U(1) and on the conditioning of the matrix K. But it is important to note that the 
iteration will always converge, provided that K is positive definite. Furthermore, the rate of 
convergence can be increased using overrelaxation, in which case the iteration is as follows, 
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where β is the overrelaxation factor. The optimum value β depends on the matrix K but is 
usually between 1,3 an 1,9. 

All trough direct solution methods are used almost exclusively in finite element analy-
sis programs, it is important to recognize some advantages of the Gauss-Seidel method. 
The solution scheme might be used effectively in the problem areas of reanalysis and op-
timization, all trough a form of Gauss elimination may still be more efficient. Namely, if 
in reanalysis a structure is changed only slightly, the previous solution is a good starting 
vector for the Gauss-Seidel iterative solution f the new structure. 

Another advantage of the Gauss-Seidel method can be that the assembled stiffness 
matrix need not to be formed and thus out-of-force solution is avoided, because all matrix 
multiplications can be carried out on the element level. For example, instead of calculat-
ing KLU (s-1), we can evaluate ΣmKL

(m)U (s+1), where the summation goes over all finite ele-
ments and KL

(m) contribution of the mth matrix to KL. The same procedure is generally 
used in the implementation of the central difference scheme for transient analysis. 

Finally, we should also recognize that there is the possibility of combining the direct 
and iterative solution schemes discussed above. 

2. PROBLEM CONSIDERATION  

Consider a simply supported square plate of side L that is subjected to a load q per unit area, 
as shown in Fig. 2.1 The deflection w in the z-direction is the solution of biharmonic equation: 
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The boundary conditions are 0=w  and 02

2

=
η∂

∂ w  on its four edges, where η denotes the 

normal to the boundary. D is the flexural rigidity of the plate, given with: 
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E − Young's modulus, t − Plate thickness, ν − Poisson's ratio 

 
Fig. 2.1 Loaded square plate 

For simplicity, suppose the loading is uniform so that q is constant. Now we are 
approaching the next faze of the procedure and that is, writing a program for computing 
the deflections w at a set of points with n intervals along each side of the square. 

3. METHOD OF SOLUTION  

By introducing the variable wu 2∇= , the problem amounts to solving Poisson's 
equation twice in succession: 

 
D
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 uw =∇2  (8) 
For this purpose, we employ a formula that uses the Gauss-Seidel method to approximate 

the solution of Poisson's equation: 
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The finite difference approximation of equation (10) is: 
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Thus, for yx Δ=Δ , the Gauss-Seidel method amounts to repeated application of 

 ])([
4
1

,
2

1,1,,1,1, jijijijijiji x ΨΔ−Φ+Φ+Φ+Φ=Φ +−+−  (12) 



J. LIPKOVSKI, D. PENAVA 202 

at every interior grid point. The program is written for kmaks applications of (12) through 
interior grid points.  

Here, the matrix Ψi,j would contain the known right side values. By using appropriate 
arguments, the program will solve equations (7) and (8). 

 
Fig. 2.2 Deflected square plate 

5. MATLAB IMPLEMENTATION 

Table 1. List of Principal Variables and they symbols 

Program  
symbol 

List of Principal Variables 
Definition 

n Number of grid spacings along a side of the square, n 
E Young's modulus, E [kN/m2] 
v Poisson's ratio, v 
L Length of a side of square, L [m] 
q Load per unit area of the plate, q [kN/m2] 
t Plate thickness, t [m] 
kmaks Number of Gauss-Seidel iterations, kmaks 
D Flexural rigidity, D [kN/m] 
i,j Grid-point subscripts, i, j 
u Matrix of intermediate variable ∇2u = q/K at each grid point 
w Matrix of downward deflection ∇2w = u [m], at each grid point 
qoverd Matrix with values qoverd(i,j) = q/D at each grid point 

Poisson's equation ∇2u = p/K:  
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Poisson's equation ∇2w = u: 
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4. FLOW DIAGRAM 
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6. LOGICAL DECISION MATRIX 

Table 2 Logical decision matrix regarding methods for solution of given problem 

Method 
(programming 
language) 

User friendly 
for engineers 
(weight: 0.3) 

Application 
spectrum of 
our program 
(weight: 0.2) 

Time of 
execution 

(weight: 0.3)

Output / 
Grpahical 

Presentation 
(weight: 0.2) 

Total 
Score 

Gauss-Seidel 
(Matlab) 60 pt 10 pt  70 pt 80 pt 57 pt 

Jacobi  
(Matlab) 50 pt 10 pt 50 pt 80 pt 48 pt 

Gauss-Seidel 
(Mathematica) 50 pt  10 pt 70 pt 90 pt 56 pt 

Jacobi 
(Mathematica) 40 pt 10 pt 50 pt 90 pt 47 pt 

Gauss-Seidel 
(Pascal) 50 pt  10 pt 70 pt 60 pt 50 pt 

Jacobi 
(Pascal) 40 pt 10 pt 50 pt 60 pt 41 pt 

7. CONCLUSION  

In this work we consider a simply supported square plate of side L that is subjected to 
a load q per unit area. The deflection w in the z- direction is the solution of the bihar-
monic differential equation. For simplicity, we suppose that the loading is uniform so that 
q is constant. We also use two solution steps, by reducing the problem to the solution of 
two following Poisson's differential equations. The program is written for computing the 
deflections w at a set of points with n intervals along each side of the square plate. In this 
case, we employ a program that uses the Gauss-Seidel method to calculate approximately 
the solution of Poisson's equation.  

The program has been written for one sort of problems, but can be improved by im-
plementation of subprograms by replacing the discrete equations by changing subpro-
grams. Every subprogram would refer to a different equation. Otherwise, we could use 
different numerical "solvers", by implementing them in different subprograms. 
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PROGRAM ZA PRORAČUN  DEFORMACIJA  
KVADRATNE PLOČE OPTEREĆENE JEDNAKOPODELJENIM 

OPTEREĆENJEM POMOĆU GAUS-SAJDELOVE METODE  
ZA SLUČAJ POASONOVE DIFERENCIJALNE JEDNAČINE 

Jana Lipkovski, Davorin Penava 

U ovom radu se razmatra slobodno oslonjena kvadratna ploča stranice L opterećena 
opterećenjem q prko cele površine. Pomeranje w u z-pravcuje je rezultat poasonove diferencijalne 
jednačine. Pretpostavlja se da je opterćenje q konstantno. Program je napisan za proračun 
pomeranja w za skup tačaka u n intervalu duž svake strane kvadratne ploče. U tom slučaju se koristi 
program sa Gaus-Sajdelovom metodom za aproksimaciju Poasonove diferencijalne jednačine. 
Program je pisan za kmax za sve tačke u unutrašnjoj mreži. 




