Vol.3, No 2, 2005
pp. 145 - 153
UDC 624.191.8(045)=20
ANALYTICAL APPROACH FOR RESOLVING STRESS
STATES AROUND ELLIPTICAL CAVITIES
Dragan Lukić1,
Petar Anagnosti2
1University of
Novi Sad, Faculty of Civil Engineering Subotica, Serbia and Montenegro
2University of
Belgrade, Faculty of Civil Engineering, Belgrade, Serbia and Montenegro
Abstract. The determination of stress states
around cavities in the stressed elastic body, regardless of cavity shapes,
that may be spherical, cylindrical, elliptical etc. in its analytical approach
has to be based on selection of a stress function that will satisfy biharmonic
equation ? 2? 2?
= 0, under given boundary conditions. This paper is concerned with formulation
and solution of the cited differential equation using elliptical coordinates
in conformity with the cavity shape of oblong ellipsoid [1]. It is therefore
considered that the formulation of the stress tensor will be done in conformity
to the cited coordinates.
The paper describes basic statements and definitions
in connection to harmonic functions used for determination of stress states
around cavities formed in the stressed homogeneous space. The particular
attention has been paid to the use of Legendre's functions, with definitions
and derivation of recurrent formulas, that have been used for determination
of stress states around an oblong ellipsoidal cavity, [1]. The paper also
includes the description of procedures used in forming series based on
Legendre's functions of the first order.
Key words: coordinates, biharmonic differential
equation, stress state, stress function, harmonic functions, recurrent
formulas
MATEMATIČKE OSNOVE ODREĐIVANJA
NAPONSKIH STANJA OKO ELIPTIČNIH OTVORA
Određivanje naponskih stanja oko otvora predstavlja
veoma složen matematički problem. Zbog toga, pri razmatranju ovog problema
potrebno je najpre definisati pojedine oblasti matematičke analize koje
se pri tome koriste.
Prvi deo rada razmatra rešavanje biharmonijskih
diferencijalnih jednačina ? 2? 2?
= 0 uzimajući u obzir rešenje Papkovič ? Neubera ?1?.
U drugom delu rada definišu se odredjene klase
specijalnih harmonijskih funkcija (tipa Ležandra) kao posebno značajnih
za analizu naponskih stawa.Pored toga, u radu se prikazuju rekurentne formule
definisane u radu ?1? kao i predstavljanje funkcija u obliku reda po Ležandrovim
polinomima.