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Abstract. A methodology of nonlinear analysis of timber frame structures with flexible 
connections has been developed in this paper. The methodology is based on the results 
of experimental investigation of connections behavior under static and cycling loading. 
The adopted numerical method is based on the concept of localized nonlinearity which 
facilitates the reproduction of the experimentally determined connections behavior in 
the analysis of frame structures. The methodology is also applicable to other types of 
timber structures. 

1. INTRODUCTION 

The traditional analysis of timber structures is based on the assumption that elements 
connections are either rigid or hinged. This is an actually simplified approach and it 
excludes the possible cases of the real behavior of the connections. However, in order to 
obtain the actual stress and deformations distribution in timber structures, the real 
deformation characteristics must be included in the analysis. If the relation moment-
rotation is known for each connection in a structure, the exact solution for the stresses 
and deformations can be obtained by a nonlinear analysis. 

The real nonlinear analysis of a structure is possible only in the time domain (time 
history analysis). If we assume in the analysis of timber structures that the nonlinear 
deformations occur only in connections, then the stresses in a structure are linearly 
dependent on the deformation for the most part of the degrees of freedom, and nonlinear 
response occurs in a relatively small number of degrees of freedom. Because the points 
of a structure in which the nonlinear deformations occur are known in advance, an analysis 
can be carried out by the so call Fast Nonlinear Analysis developed by Wilson [7]. 
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2. MATRIX MODIFICATION OF THE RIGID CONNECTIONS TO FLEXIBLE CONNECTION 

The stiffness matrix of a prismatic member of the length L with rigid end connections 
and generalized displacement in a plane defined in Fig. 1 is given by the Eq. 1. 

 
Fig. 1. The generalized displacement of a strait member 
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However, if the connection at the member ends can deform, the stiffness matrix given 
by Eq.1 can be modified to take into account the effects of the connection deformations 
in the corresponding degrees of freedom. The modified stiffness matrix can be 
determined by the direct method based on the clear geometrical and static meaning of its 
elements [4]. Because the problem of bending is independent of the problem of axial 
deformation, the matrices of transversal and axial stiffness can be treated separately. 

2.1 Matrix of transversal stiffness 

The stiffness matrix of a bar with 
incompletely fixed end, whose rota-
tional stiffness are Srj and Srk (see 
Fig.2), can be determined by giving 
the unit generalized displacement in 
different degrees of freedom taking 
into account the possible relaxation in 
the rotational direction, as illustrated 
by Eq. 2. 
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The obtained matrix is given by Eq. 3 

 
Fig. 2. A member with flexible end connection 
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The form of the matrix given by Eq.3 is general, because it can be also used for fixed 
or hinged bar ends, by simply letting the corresponding stiffness Sri tend to infinity or to 
zero. 

2.2 Matrix of axial stiffness 

The stiffness of a bar connection can be expressed through the reduced cross-section 
area of a bar A* . In the model shown in Fig.3 it is displayed by the classic springs with 
stiffness Sai. 

 
Fig. 3. The model of axial stiffness 

The reduced cross-section area is then given by Eq. 5 
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and the modified axial stiffness matrix has the form 
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for the degrees of freedom defined in Fig. 3, the complete stiffness matrix obtained by 
the superposition of matrices given by Eq. 3 and Eq. 6 is  



E. MEŠIĆ 310 

 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

β+
β+

−
β+

β+
−

β+β+β+
−

β+β+
−

αα−

β+
−β+

β+

β+β+β+
−

β+β+β+
α−α

β+
=

1
11

1
2

212
2

21

00

2
2

2

1
2

212
2

21

00

3

4
L

602
L

60
L

6
L

120
L

6
L

120

0000

2
L

604
L

60
L

6
L

120
L

6
L

120

0000

)1(L
EI*]K[   (7) 

where 
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The modified stiffness matrix is also developed for the analysis of buckling and for 
the application of the Theory of second order and secondary effects. 

 
Fig. 4. A member with incompletely fixed ends under compression 
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where '*]K[  − modified stiffness matrix in accordance with the Theory of second order, 
 1]'A[ −  − modification matrix,  
 ]'K[  − original stiffness matrix of the Theory of second order. 

When the Eq. 9 is applied one obtains 
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where 
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2.3 Application to the nonlinear analysis 

The nonlinear behavior of timber frames with flexible connections is mainly the result 
of the nonlinear deformations of connections and the second order effects by large 
deformations. If the analysis is limited to the small deformations, then the stiffness matrix 
given by Eq. 7 can be applied. In that case, the nonlinear behavior in a structure is limited 
to the connections, those may be termed as the localized nonlinearities. In order to carry 
out the analysis, the force-displacement relation, like one shown in Fig. 5, must be 
defined for all stiffness coefficients Si in the stiffness matrix given by Eq.7. 

An analysis of nonlinear structures is usually carried out by so called incremental 
method. The loading is divided into a series of small partial loading or increment which 
can be different in the general case. Within each load increment the analysis is carried 
out with the assumption of linear behavior of structures with the stiffness matrix 
modified in accordance with the achieved level of deformation. 

 

Fig. 5. An arbitrary moment-rotation relationship of a flexible connection 

 δϕ⋅=δ rjSM , )/()MM(S 1jj1jjjr −− ϕ−ϕ−=  (12) 

In order to achieve a faster convergence of the solution, the method is combined with 
an iterative procedure in each increment (Newton-Raphson modified procedure, at et.). If 
by an analysis, the secondary effects (geometrical nonlinearitiy) are also considered, the 
stiffness matrix of a bar given by Eq. 10 is used. The geometrical nonlinearity in timber 
structures originates not only from the deformation of slender compressed members, but 
also from the significant deformation of connections.  
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3. MODELING OF CONNECTIONS WITH NONLINEAR FINITE ELEMENTS 

In order to avoid the nonlinear behavior of connections with a single spring with 
complex force-displacement relationship, several nonlinear elements with simple force-
deformations characteristics are employed, and they can be found in same commercial 
program for the structural analysis based on Finite element method. This approach is 
based on the concept of localized nonlinearities, which is in particular suitable for the 
analysis of timber structures because the nonlinear behavior occurs generally only in 
connections, while beams and columns stay in the range of linear deformations. 

Such nonlinear elements can be found, for instance, in the computer program 
SAP2000n, and are termed as Nllink elements [7]. Basically, they are springs with a zero 
length and can be located between the end joint of the structural elements or between 
structural elements and supports. 

3.1 Nllink elements 

In this paper, three types of elements were used: Gap, Hook and Plastic 1. Each 
element can deform independently in the all six degrees of freedom. 

3.1.1 Gap element 
The nonlinear force-deformation relationship is given in Fig. 6. 

 

k - spring constant,  

open - initial gap opening, which must be zero or 
positive.  

Fig. 6. Gap element - force-deformation relationship 

 

3.1.2 Hook element 
The nonlinear force-deformation relationship is given in Fig. 7. 

 

k - spring constant, 

open - initial hook opening, which must be zero or 
positive. 

Fig. 7. Hook element - force-deformation relationship 
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3.1.3 Plastic 1 element 
The nonlinear force-deformation relationship is given in Fig. 8. 

k - spring constant 

yield - yield force 

ratio - ratio of post-yield stiffness 

Fig. 8.  Plastic 1 element - force-
deformation relationship 

3.2 Modeling of a connection with Nllink elements [5] 
It was found that the actual behavior of a connection between a beam and a column in 

the timber frame structures determined by the experiments can be modeled with a series 
of four Nllink elements placed between end joints of a beam and a column and one 
fictitious joint between the actual joints, as shown in Fig. 9. The fictitious joint is 
required so that a good reproduction of the actual connection behavior could be achieved. 

Fig. 9. A joint of a timber frame modeled with four Nllink elements 

In this way, a single spring is replaced by four Nllink elements, which for a given 
degree of freedom give the same force-displacement relationship as a single spring. In 
Fig. 10 is shown the force-displacement relationship of the model connection under a 
cyclic loading. 

1 -Gap 
2 -Hook 
3 -Plastic 1
4 -Plastic 1

 
Fig. 10. Hysteretic behavior of the proposed model connection 
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The above figure showed that the transfer of loading through a connection by the 
engagement of the element , whose initial stiffness is equal to the initial stiffness of the 
connection, coming mainly from the friction between the connected members. When the 
loading overcomes the friction (point Y4) the element  begins to yield and yields until 
the opening in Hook element closes, that is until the timber engages connectors. After 
that the elements ,  and  are engaged. The beginning of the plastification of the 
connection coincides with the beginning of yielding of element  (point Y3). The model 
behaves analogously when a loading changes direction, the only difference being that 
instead of Hook, the Gap element gets engaged. It should be clear that the force-
displacement relationship can be easily adjusted to different connections and loading by 
simply changing the parameters of the Nllink elements. 

When modeling connections behavior with Nllink elements, it is possible to take into 
analysis the deformations of a connection in all directions simultaneously (rotations and 
translations), and their joint effect on the behavior of a complete timber structure. So, if 
the deformation characteristics of a connection are known (through experiments), its 
modeling becomes simple and allows a detailed analysis of a structure for a time-varying 
loading. 

4. SOLUTION OF EQUATION OF MOTION  
BY TREATING THE COUPLING ELEMENTS AS A PSEUDO-LOADING  

This approach is convenient for solving equations of motion which are only partially 
coupled and in which only a small part of mass-matrix and stiffness matrix elements are 
not constant [2]. Those parts of mass, stiffness and damping matrices are transferred to 
the right side of equation and in the farther analysis treated as a pseudo-loading, leaving 
on the left side of the equations matrices with constant coefficients with which a standard 
modal analysis can be carried out. 

The modes computed from those mass and stiffness matrices are then used to 
uncouple the transformed equations of motion. The solution of equations of motion is 
obtained by iteration. If the pseudo-loading is small in comparison to the actual loading, 
their effect on the response 

of a structure is also small and the convergence of iteration process is fast. If the 
pseudo-forces are significant the iteration is slower. 

In the continuation of this presentation only the procedure only for the case when the 
coupling of generalized coordinates is caused by the nonlinear stiffness matrix will be 
illustrated. If the response of a structure is determined by step-by-step integration, in each 
step the parts of the stiffness matrix causing the coupling of the equations of motion must 
be transferred to the right-hand side of the equations. This requires that the time 
increments selected should be small enough, so that the variation not only of actual 
loading, but also of pseudo-loading could be considered linear. In each time step the 
modal displacements are determined assuming linear behavior of a structure and linear 
variation of loading and pseudo-loading, carrying out iteration until the modal forces on 
the left-hand side of the equations are set in equilibrium with the forces on the right-hand 
side within the specified accuracy. 
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4.1. Change of stiffness 

The change in stiffness in the analysis of a structure is defined through the difference 
between the original linear stiffness and the stiffness at the achieved level of 
deformations. Then, the original elastic stiffness matrix is used to determine the Eigen 
modes, while the difference is in each step treated as a pseudo-forces. In Fig. 11 this 
concept is illustrated for only one degree of freedom. 

 
Fig. 11. Definition of original stiffness and pseudo-forces 

As the original stiffness, an arbitrary stiffness k0 is assumed, while the nonlinear 
stiffness is defined by an average slope kn. The nonlinear force is then expressed as 

 )t(vk)t(f nsn ⋅=  (16) 

However, in the procedure with pseudo-loading, this force must be expressed through 
the difference in respect to elastic force, that is  

 sdsesn fff +=   (17) 
where 

fse = k0v  and  fsd = kdv 
and 
 )t(v)kk()t(f d0sn ⋅+=  (18) 

When this approach is applied to a multi-degree-of-freedom system, the vector of 
nonlinear forces is expressed by the following equation 

 )}t(v{])k[]k([)}t(f{ d0sn ⋅+=  (19) 

The equations of motion can be then written as follows 

 )}t(v]{k[)}t(p{)}t(v]{k[)}t(v]{c[)}t(v]{m[ d0 −=++ &&&  (20) 

When the nonlinear change in stiffness is transferred to the right-hand side of the 
equations of motion, one obtains 

 )}t(v]{k[)}t(p{)}t(v]{k[)}t(v]{c[)}t(v]{m[ d0 −=++ &&&  (21) 

The left-hand side is now standard formulation of the linear response of a system, 
while the nonlinear changes of stiffness appear on the right-hand side as pseudo-forces. 
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The nonlinear changes of stiffness [kd] are, of course, dependent on the displacement 
{v}. In the course of solving the equations of motion [kd] is being determined from the 
stress-strain diagram of a given material, or from the force-displacement relationship of a 
connection in the case of timber structure. 

The equation (21) can be solved by a direct step-by-step integration, but it is much 
more efficient to uncouple the equation by means of the natural modes of the system 
defined by the left-hand side of the equation, and then to integrate them using the limited 
number of modes, that is {v(t)} = [Φ]{Y(t)}. Using this transformation, the Eq. (21) 
obtains the following well known form: 

 )]t(F[)}t(P{)}t(Y]{K[)}t(Y]{C[)}t(Y]{M[ sd−=++ &&&  (22) 

If the system is proportionally damped, the equation (22) is uncoupled and the 
integration is actually carried out on the equations 

 ∑
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The equilibrium in one time step for one mode "n" in the "k" cycle of iteration is 
defined by the expression 
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In each cycle of iteration the equations are integrated and the displacement and 
velocity at the end of a time step are determined, assuming that both, the modal loading 
Pn(t) and the pseudo-force Fsdn(t) vary linearly within the time increment. 

4.2. Solution of equations of motion using Ritz-vectors 

The investigations have shown that a dynamic analysis based on load-depending Ritz-
vectors are more accurate than an analysis carried out with the same number of natural 
modes [2]. The reason is that the Ritz-vectors are derived taking into account the actual 
distribution of a dynamic loading, while the natural modes depends only on the physical 
characteristics of a system. 

The basic steps in deriving each Ritz vector are: 
 solution of a system of linear equations of equilibrium in order to determine the 
deformation of a system due to inertial forces corresponding to the previously 
defined vector, 

 application of Gram-Schmidt procedure to make the derived vector orthogonal to all 
previously derived vectors with respect to mass of the system, 

 normalization of the vector to obtain the unit modal mass. 
The first Ritz vector is derived as the vector of static deformation due to gravitational 

loading of a system. 
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4.3. Quasi-static nonlinear analysis  

Response of a structure in a natural made in each time increment can be divided in 
two parts: 

 response to the loading proportional to the modal loading, and 
 transient response which is oscillatory and depends on the displacement and 
velocity at the beginning of the time increment. 

If the natural modes have high frequency (short periods) the inertial effects during 
time increment are small and can be neglected. Therefore, by a nonlinear time dependent 
analysis of a timber structures. 

5. 5. COMPARISON OF THE EXPERIMENTALLY DETERMINED AND MODELED  
WITH NLLINK ELEMENTS BEHAVIOR OF THE CONNECTION [5] 

5.1 Under dynamic loading 

 

Fig. 12.  Moment-rotation 
relationship in the joint of a 
frame for one cycle of the 
cyclic loading  

5.2 Under static loading 

________________  modeled with Nllink elements 
................................  experimentally determined 

Fig. 13.  Moment-rotation relationship in the 
joint of timber frame for 
monotonically increasing loading  
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6. EFFECTS OF CONNECTION DEFORMABILITY IN A TIMBER FRAME FOR STATIC LOADING [5] 

The developed methodology has primarily been applied to the analysis of the certain 
type of timber frame structures whose results of tests of connection behavior under static 
loading were available to the author. 

 

Fig. 14.  Loading and bending 
moments in a timber 
frame for the 
monotonically 
increasing static 
loading 

 

 

Fig. 15.  Dependence of the 
bending moment in 
joint A on the 
monotonic increase of 
loading shown in 
previous figure 

In terms of simple frame, it has been established that the distribution of section forces 
(on the first place bending moments) does not significantly differ from the distribution 
resulting from the estimation with flexible connection behavior defined with current 
regulations, applied both within the country and elsewhere (Eurocode 5). These 
differences are, however, significant in the case of frames of a more complex geometry. 
Final analysis, however, require an overall parameter study, which would be the subject 
of a separate research. 
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7. EFFECTS OF CONNECTION DEFORMABILITY  
ON THE DYNAMIC RESPONSE OF A TIMBER FRAME [5] 

The developed numerical model and method of analysis has been also used to analyze 
the behavior of timber frames under dynamic loading. 

Fig. 16.  Dynamic model of the 
frame with harmonic 
loading 

Determination of the relative damping from the harmonic response curves of the 
frame with joints deforming in the range of large nonlinear deformations and with the 
assumption that joints deform linearly. 

 

 
Fig. 17.  Response spectra of the frame with linearly and  

nonlinearly deformable  connections to harmonic loading 
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It has been found that the coefficient of the relative damping suggested in literature 
and indirectly introduced even in Eurocode 8 has been overestimated. The reason for this 
lies in the fact that the deformation of connections, even in the case of the strongest 
seismic load, remains within the range of small inelastic deformations, so that the 
dissipation of energy is lower than the one found by experiments with large connection 
deformations. 

8. CONCLUSION 

It has been found that the coefficient of the relative damping suggested in literature 
and indirectly introduced even in Eurocode 8 has been overestimated. The reason for this 
lies in the fact that the deformation of connections, even in the case of the strongest 
seismic load, remains within the range of small inelastic deformations, so that the 
dissipation of energy is lower than the one found by experiments with large connection 
deformations. 
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ANALIZA RAMOVA OD DRVETA  
SA LOKALNOM NELINEARNOŠĆU 

Esad Mešić 

U ovom radu je izneta  metodologija nelinearne analize ramova od drveta sa pomerljivim 
vezama u čvorovima. Metodologija je bazirana na rezultatima eksperimenta veza usled statičkog i 
cikličkog opterećenja. Primenjeni numerički metod je baziran  na konceptu lokalne nelinearnosti 
kojom se potvrdjuju eksperimentalno određeno ponašanje veza u analizi ramovskih konstrukcija. 
Metodologija je primenjiva i na druge tipove drvenih konstrukcija.  


